
CSE 250: Hash Tables

CSE 250: Hash Tables
Lecture 32

Nov 17, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Class Logistics

Reminders

PA3 Tests due Weds, Nov 22 Corrected

PA3 Implementation due Sun, Dec 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

Recap: So Far

Current Design: Hash Table with Chaining

Array of Buckets

Hash Function assigns each set element to a bucket

Each bucket is the head of a linked list (a “chain”)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

Recap: find(x)

Expected Cost

Find the bucket O(chash)
1

Find the record in the bucket O(α · cequals)2

Total: O(chash + αcequals) = O(1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Total: O(chash + N · cequals) = O(1 + N) = O(N)

1chash is the cost of the hash function.
2cequals is the cost of .equals.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

Recap: insert(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

Recap: remove(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Remove the record from the linked list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Remove the record from the linked list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

HashSet

public boolean add(E a)

Look at array index hash(a) mod B; If the element is not in
the linked list there, insert it. Expected O(1)

public boolean remove(T a)

Look at array index hash(a) mod B; If the element is in the
linked list there, remove it. Expected O(1)

public boolean contains(T a)

Look at array index hash(a) mod B; If the element is in the
linked list there, return true. Expected O(1)

public int size()

Return a pre-computed size. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Recap

More Optimizations

Hash Table with Chaining

. . . but re-use empty hash buckets instead of linked lists.

Hash Table with Open Addressing
Cuckoo Hashing (Double Hashing)

. . . but avoid bursty re-hashing costs

Dynamic Hashing

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Open Addressing

Hash Table with Chaining

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

DE

hash(A) = 1

hash(B) = 2

hash(C) = 2

hash(D) = 4

hash(E) = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Open Addressing

Hash Table with Open Addressing

0 1 2 3 4 5 6 7A B C D E

hash(A) = 1

hash(B) = 2

hash(C) = 2

hash(D) = 4

hash(E) = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Open Addressing

Open Addressing

insert(a)

Start at i = 0

While bucket hash(a) + i mod N is occupied i = i + 1

Insert at bucket hash(a) + i mod N

find(a)

Start at i = 0

While bucket hash(a) + i mod N is occupied:

If bucket hash(a) + i mod N holds a, return true
Otherwise i = i + 1

Return false

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Open Addressing

Open Addressing

remove(a)

Find the bucket containing a.

For every element in the contiguous block following a:

Move the element b into the newly freed spot unless
hash(b) < hash(a) + i
Move to the next element

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Open Addressing

Open Addressing

Variant Probing Strategies

Linear Probing: Offset to hash(a) + c · i for some constant c

Quadratic Probing: Offset to hash(a) + c · i2 for some
constant c

Runtime Costs

Chaining: Runtime dominated by the size of the biggest
linked list

Open Addressing: Runtime dominated by probing

With a low enough αmax , operations remain expected O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Cuckoo Hashing

Cuckoo Hashing

Let’s say we’re ok with a more expensive insert/remove.
Can we get O(1) find?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Cuckoo Hashing

Cuckoo Hashing

About 56 of the Old World species and
three of the New World cuckoo species
(pheasant, pavonine, and striped) are
brood parasites, laying their eggs in the
nests of other birds and giving rise to
the metaphor ”cuckoo’s egg”. These
species are obligate brood parasites,
meaning that they only reproduce in
this fashion.

Wikipedia; Image by JJ Harrison, used under CC-BY 3.0

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Cuckoo Hashing

Cuckoo Hashing

0 1 2 3 4 5 6 7A B

C

C B

D

D

E

E

B

B

C

C

A

A

hash1(A) = 1; hash2(A) = 3

hash1(B) = 2; hash2(B) = 4

hash1(C) = 2; hash2(C) = 1

hash1(D) = 4; hash2(D) = 6

hash1(E) = 1; hash2(E) = 4

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Cuckoo Hashing

Cuckoo Hashing

Find O(1)

Look at array index hash1 mod B

Look at array index hash2 mod B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Cuckoo Hashing

Cuckoo Hashing

Find is unqualified O(1)

Remove is unqualified O(1)

Insert is expected O(1) (for low values of α)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Dynamic Hashing

Dynamic Hashing

The amortized cost of a rehash is O(1), but periodic lag spikes can
be annoying.
Can we “flatten out” the lag spikes?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Dynamic Hashing

Dynamic Hashing

Observation: If a = N mod B then either

a = N mod 2B, or

a+ B = N mod 2B

Doubling the size of the hash table always rehashes every element in a
specific bucket to one of two places.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Dynamic Hashing

Dynamic Hashing

Example: hash(N) = N

Directory

0

1

Data Pages

2 4

1 3 5

2

3

1

3

5

7

62

4

6

8

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Dynamic Hashing

Dynamic Hashing

An array (of size B) of pointers to arrays (each of size α).
(and some book-keeping metadata)

When doubling the array size, only copy the array pointers.
(faster than rehashing the entire hash table)

Only split one bucket at a time

Only double the array when a bucket being split has only one
pointer to it.

A Dynamic Hash Table does not have better asymptotic complexity
than a Hash Table with Chaining (but has a better constant factor).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Maps

The Map ADT

A collection of key-value pairs (key type K, value type V) with
unique keys.

public void put(K key, V value)

Insert the pair key, value into the map, replacing any
existing pair with key key.

public V remove(K key)

Remove the pair with key key, returning the pair’s value if it
is present.

public boolean contains(K key)

Return true if the map contains a pair with key key.

public int size()

Return the number of pairs in the map.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Hash Tables

Maps

HashMap

public void put(K key, V value)

Look at array index hash(key) mod B; Remove the pair with
the same key if present; Insert the new pair. Expected O(1)

public V remove(K key)

Look at array index hash(key) mod B; Remove the pair with
the same key if present. Expected O(1)

public boolean contains(K key)

Look at array index hash(key) mod B; Return true if there is
an existing pair with the key. Expected O(1)

public int size()

Return a pre-computed size. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY


