
CSE 250: Spatial Indexing

CSE 250: Spatial Indexing
Lecture 34

Nov 27, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Class Logistics

Reminders

PA3 Implementation due Sun, Dec 3

Course Evals Bonus

Get to 90% completion across all 3 sections, we’ll release an
exam question.
More details to be posted on Piazza.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Overview

Some problems are Really big!

ESA/Hubble and NASA; http://www.spacetelescope.org/images/potw1006a/

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

http://www.spacetelescope.org/images/potw1006a/

CSE 250: Spatial Indexing

Overview

Some problems are Really small!

Molecular Dynamics Simulation of Liquid Water;
https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

CSE 250: Spatial Indexing

Overview

Some problems are Really detailed!

This is not a photo. It’s a
computer generated
image.

Ray tracing can create photorealistic images;
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/File:Glasses_800_edit.png

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/File:Glasses_800_edit.png

CSE 250: Spatial Indexing

Overview

What do these things have in common?

They have many elements

Celestial Bodies
Molecules
3D Mesh Cells

The elements are organized spatially

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Overview

What questions do we want to ask?

What elements (planets, molecules, etc. . .) are close to each
other?

Which elements will a ray of light bounce off of / will a
projectile hit?

What elements are closest to a given point?

What elements fall within a given range?

How can we organize the elements in a way that allows us to efficiently
answer these questions?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Overview

Organizing elements in 2D/3D space

What data structures have we seen already that let us efficiently
organize/store “sorted” data?

Sorted Arrays (... are not great for updates)

Binary Search Trees

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Overview

Binary Search Trees (for 1D data)

1 class Node<T>

2 {

3 public T value;

4

5 /** Guarantee:

6 left.value < this.value **/

7 Optional<Node<T>> left

8 = Optional.empty();

9

10 /** Guarantee:

11 right.value >= this.value **/

12 Optional<Node<T>> right

13 = Optional.empty();

14 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Overview

Binary Search Trees (for 1D data)

Insert

Find the right spot O(depth)

Create and insert O(1)

Find

Find the right spot O(depth)

Create and insert O(1)

If the tree is balanced, O(depth) = O(logN)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

The 2D Map ADT

More Dimensions

This worked for 1-dimensional data. How could we change it to
work with 2-dimensional data?
Example: Birthday, Zip Code

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

The 2D Map ADT

More Dimensions

Goal: A data structure
that can answer:

1 Find everyone with a
specific birthday.

2 Find everyone with a
specific zip code.

3 Find everyone that
has a specific
birthday and zip code

Idea 1: Three data structures

Lots of memory

Idea 2: BST over birthday

Operation 2 is O(N)

Operation 3 is O(log(N) + |same bday|)
Idea 3: BST over zip code

Operation 1 is O(N)

Operation 3 is O(log(N) + |same zip|)
Idea 4: BST w/ Lexical Order

Operation 2 is still O(n)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

The 2D Map ADT

Why did it fail?

Ideas 2, 3
BST works by grouping “nearby”
values together into the same
subtree. . .
. . . but “near” in one dimension
says nothing about the other!

Idea 4
BST works by partitioning the
data. . .
. . . but lexical order partitions
fully on one dimension before
partitioning on the other.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

The 2D Map ADT

Related Problems

Mapping

What’s within 1
2 mile of me?

What’s within 2 minutes of my route?

Games

What objects are close enough that they might need to be rendered?

Which direction should an NPC move in to be in range of an enemy?

Science

“Big Brain Project”: Neuron A fired; What other neurons are close
enough to be stimulated?

Astronomy / MD: What forces are affecting a particular body?
What forces can we ignore/estimate?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

The 2D Map ADT

The 2DMap¡T¿ ADT

public void insert(int x, int y, T value)

Add an element to the map at point (x, y)

public T get(int x, int y)

Retrieve the element at point (x, y)

public Iterator<T>

range(int xlow, int xhigh, int ylow, int yhigh)

Retrieve all elements in the rectangle ([xlow, xhigh), [ylow, yhigh))

public T[] kNearestNeighbor(int x, int y, int k)
Retrieve the k elements closest to the point (x, y)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Attempt 1: Partition on both dimensions

Possible Values:

Current Node

Lesser Subtree Greater Subtree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Attempt 1: Partition on both dimensions

Possible Values: Current Node

LL Subtree

LG Subtree

GL Subtree

GG Subtree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Each Node has 4 Children

(44,42)

(44,42)

(44,42)

(14,21)

(14,21)

(14,21)

(34,82)

(34,82)

(62,65)

(62,65)

(60,14)

(60,14)

(16,97)

(16,97)

(36,66)

(36,66)

(66,56)

(66,56)

(50,83)

(50,83)
(90,27)

(90,27)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Each Node has 4 Children

”Binary” Search Tree

”Bin” – prefix meaning 2

Each node has (at most) 2 children

”Quadary” Search Tree

”Quad” – prefix meaning 4

Each node has (at most) 4 children

Usually say: ”Quad-Tree” instead

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Quad Trees — Find Node

public Node<T> get(int x, int y)

If current.x == x ∧ current.y == y

return current

If current.x < x

If current.y < y return current.gg.get(x, y)

Else return current.gl.get(x, y)

Else

If current.y < y return current.lg.get(x, y)

Else return current.ll.get(x, y)

What is the complexity?
O(depth)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Quad Trees — Other Operations

get(x, y)

Find position corresponding to (x , y). O(depth)
Return the node if it exists. O(1)

insert(x, y, value)

Find placeholder spot corresponding to (x , y). O(depth)
Create and inject new node. O(1)

range(xlow, xhigh, ylow, yhigh)

...?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Each Node has 4 Children

(44,42)

(44,42)

(44,42)

(14,21)

(14,21)

(14,21)

(34,82)

(34,82)

(62,65)

(62,65)

(60,14)

(60,14)

(16,97)

(16,97)

(36,66)

(36,66)

(66,56)

(66,56)

(50,83)

(50,83)
(90,27)

(90,27)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Quad Trees — Range

public Iterator<T> range(Rectangle target)

if target.isEmpty() return

if target.contains(x, y) add value to result

if ll.isDefined ll.range(target.crop(

new Rectangle(−∞, x, −∞, y)))

if lg.isDefined lg.range(target.crop(

new Rectangle(−∞, x, y, ∞)))

if gl.isDefined ll.range(target.crop(

new Rectangle(x, ∞, −∞, y)))

if gg.isDefined lg.range(target.crop(

new Rectangle(x, ∞, y, ∞)))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Quad Trees — Challenges

Creating a balanced quad tree is
hard

Impossible to always split collection
elements evenly across all four subtrees
(though depth = O(logN) is possible)

Keeping the quad tree balanced
after updates is harder

No ”simple” analog for rotate
left/right.

�

�

�

�

�

�

�

�

Worst Case:

No possible way to create node

with > 2 nonempty subtrees.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing

Quad Trees

Quad Trees — Challenges

Problem: Every node has 4 children!

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	Overview
	The 2D Map ADT
	Quad Trees
	k-D Trees
	Nearest Neighbor

