
CSE 250: Spatial Indexing (contd.)

CSE 250: Spatial Indexing (contd.)
Lecture 35

Nov 29, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Class Logistics

Reminders

PA3 Implementation due Sun, Dec 3

Course Evals Bonus

Get to 90% completion across all 3 sections, we’ll release an
exam question.
More details to be posted on Piazza.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

Spatial Indexes

Datasets of many elements

Celestial Bodies
Molecules
3D Mesh Cells

The elements are organized spatially

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

What questions do we want to ask?

What elements (planets, molecules, etc. . .) are close to each
other?

Which elements will a ray of light bounce off of / will a
projectile hit?

What elements are closest to a given point?

What elements fall within a given range?

How can we organize the elements in a way that allows us to efficiently
answer these questions?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

Organizing elements in 2D/3D space

What data structures have we seen already that let us efficiently
organize/store “sorted” data?

Sorted Arrays (not great for updates)

Binary Search Trees

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

More Dimensions

Goal: A data structure
that can answer:

1 Find everyone with a
specific birthday.

2 Find everyone with a
specific zip code.

3 Find everyone that
has a specific
birthday and zip code

Idea 1: Three data structures

Lots of memory

Idea 2: BST over birthday

Operation 2 is O(N)

Operation 3 is O(log(N) + |same bday|)
Idea 3: BST over zip code

Operation 1 is O(N)

Operation 3 is O(log(N) + |same zip|)
Idea 4: BST w/ Lexical Order

Operation 2 is still O(n)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

Why did it fail?

Ideas 2, 3
BST works by grouping “nearby”
values together into the same
subtree. . .
. . . but “near” in one dimension
says nothing about the other!

Idea 4
BST works by partitioning the
data. . .
. . . but lexical order partitions
fully on one dimension before
partitioning on the other.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Recap

The 2DMap¡T¿ ADT

public void insert(int x, int y, T value)

Add an element to the map at point (x, y)

public T get(int x, int y)

Retrieve the element at point (x, y)

public Iterator<T>

range(int xlow, int xhigh, int ylow, int yhigh)

Retrieve all elements in the rectangle ([xlow, xhigh), [ylow, yhigh))

public T[] kNearestNeighbor(int x, int y, int k)
Retrieve the k elements closest to the point (x, y)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Attempt 1: Partition on both dimensions

Possible Values:

Current Node

Lesser Subtree Greater Subtree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Attempt 1: Partition on both dimensions

Possible Values: Current Node

LL Subtree

LG Subtree

GL Subtree

GG Subtree

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Each Node has 4 Children

(44,42)

(44,42)

(44,42)

(14,21)

(14,21)

(14,21)

(34,82)

(34,82)

(62,65)

(62,65)

(60,14)

(60,14)

(16,97)

(16,97)

(36,66)

(36,66)

(66,56)

(66,56)

(50,83)

(50,83)
(90,27)

(90,27)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Each Node has 4 Children

”Binary” Search Tree

”Bin” – prefix meaning 2

Each node has (at most) 2 children

”Quadary” Search Tree

”Quad” – prefix meaning 4

Each node has (at most) 4 children

Usually say: ”Quad-Tree” instead

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Quad Trees — Other Operations

get(x, y)

Find position corresponding to (x , y). O(depth)
Return the node if it exists. O(1)

insert(x, y, value)

Find placeholder spot corresponding to (x , y). O(depth)
Create and inject new node. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Quad Trees — Challenges

Creating a balanced quad tree is
hard

Impossible to always split collection
elements evenly across all four subtrees
(though depth = O(logN) is possible)

Keeping the quad tree balanced
after updates is harder

No ”simple” analog for rotate
left/right.

�

�

�

�

�

�

�

�

Worst Case:

No possible way to create node

with > 2 nonempty subtrees.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Quad Trees

Quad Trees — Challenges

Problem: Every node has 4 children!

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

Revisiting Lexical Order

Problem: Searches on lexical order partition all of one dimension first.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

Revisiting Lexical Order

Idea: Alternate Dimensions

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

k-D Trees

(44,42)

x < 44?
(33,66)

(66,56)

y < 66? y < 56?

(14,21)

x < 14?

(16,97)

x < 16?
(90,27)

x < 90?

(50,83)

x < 50?

(34,82)

y < 82?
(60,14)

y < 14?

(62,65)

y < 65?

All nodes at

the same level

partition on

the same

dimension

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

k-D Trees — Find Node

public Node<T> get(int x, int y)

if this.x == x ∧ this.y == y return this

if this.level % 2 == 1

if x < this.x return this.left.get(x,y)

else return this.right.get(x,y)

else

if y < this.y return this.left.get(x,y)

else return this.right.get(x,y)

What’s the complexity?
O(depth)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

k-D Trees — Depth

Key Insight: If partitioning on only one dimension, we can always
find a value that partitions the space in half.1

If each tree node partitions its descendants in half, we get
d = O(logN).

1Offer void if all values on that dimension are the same.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

k-D Trees

Quad Trees — Other Operations

get(x, y)

Find position corresponding to (x , y). O(depth)
Return the node if it exists. O(1)

insert(x, y, value)

Find placeholder spot corresponding to (x , y). O(depth)
Create and inject new node. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Nearest Neighbor

What if we want to find the closest element to a target point?

Problem: Can’t just do a normal find; The target may not be in
the tree at all.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Nearest Neighbor — Example 1

10,4

5,4 19,10

9,1 1,6 13,6 12,12

� ?

What point

is closest to

(3,8)?

3 < 10, go left.

8 ≥ 4, go left.

Found a Leaf! Closest

so far, at 2.828 units

Is it possible for something in the

other child of (5,4) to be closer?

No! Look at the

area defined by

our target and the

current best.

It does not reach the splitting line for (5,4).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Nearest Neighbor — Example 1

10,4

5,4 19,10

9,1 1,6 13,6 12,12

� ?

Is it possible for something in the

other child of (10,4) to be closer?

No! Same Logic Applies.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Nearest Neighbor — Example 2

10,4

5,4 19,10

9,1 1,6 13,6 12,12

� ?

What is the closest

point to (11,9)?

As before, find

the closest leaf.

Do we need the other

child of (19,10)?

Yes! The splitting line intersects the radius

Do we need the

root’s left subtree?Yes! Search radius inter-

sects with splitting line.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Generalization: k-Nearest Neighbors

Finding one point can be as fast as O(d) = O(logN), but as
slow as O(N)

What if we want to find the k-Nearest Neighbors instead?

Idea: Keep a list of the k nearest points, and the furthest point
defines our “search radius”

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

k-D Trees

Can generalize to k > 2 dimensions

Level 1: Partition on Dimension 1

Level 2: Partition on Dimension 2

. . .

Level k: Partition on Dimension k

Level k+1: Partition on Dimension 1

Level k+2: Partition on Dimension 2

Level i: Partition on Dimension ((i − 1) mod k) + 1

In practice range() and knn() become O(n) for k > 3
(If the range overlaps in even one dimension we need to search it)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Other Problems — N-Body Problem

What if we want to compute interactions between one body
and every other body?

Naively, this would be O(N2), but likely we don’t care as much
about interactions with bodies that are very very far away.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Other Problems — N-Body Problem

Idea: Divide our points into
a quadtree (or octree in 3
dimensions)

Do full calculations for points
in the same box.

Compute a summary (e.g.,
total force and center of
mass) for each box; treat the
entire box as one point.

Runtime is now O(N logN)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Spatial Indexing (contd.)

Nearest Neighbor

Other Problems — Ray/Path Tracing

✓

Which object does this ray of light hit? Do we need to check every object?
Idea: Build a hierarchy of bounding boxes (Bounding Volume Hierarchy). If
the ray doesn’t intersect a bounding box, we ignore it. If the BVH is balanced,
the runtime becomes logarithmic.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

