CSE 250: Spatial Indexing (contd.) Lecture 35

Nov 29, 2023

Reminders

■ PA3 Implementation due Sun, Dec 3

- Course Evals Bonus
- Get to 90% completion across all 3 sections, we'll release an exam question.
- More details to be posted on Piazza.

Spatial Indexes

■ Datasets of many elements

- Celestial Bodies
- Molecules
- 3D Mesh Cells

■ The elements are organized spatially

What questions do we want to ask?

■ What elements (planets, molecules, etc. . .) are close to each other?

- Which elements will a ray of light bounce off of / will a projectile hit?
- What elements are closest to a given point?

■ What elements fall within a given range?

How can we organize the elements in a way that allows us to efficiently answer these questions?

Organizing elements in 2D/3D space

What data structures have we seen already that let us efficiently organize/store "sorted" data?

- Sorted Arrays (not great for updates)

■ Binary Search Trees

More Dimensions

Goal: A data structure that can answer:

1 Find everyone with a specific birthday.
2 Find everyone with a specific zip code.
3 Find everyone that has a specific birthday and zip code

Idea 1: Three data structures

- Lots of memory

Idea 2: BST over birthday

- Operation 2 is $O(N)$
- Operation 3 is $O(\log (N)+\mid$ same bday $\mid)$

Idea 3: BST over zip code

- Operation 1 is $O(N)$
- Operation 3 is $O(\log (N)+\mid$ same zip $\mid)$

Idea 4: BST w/ Lexical Order

- Operation 2 is still $O(n)$

Why did it fail?

Ideas 2, 3
BST works by grouping "nearby" values together into the same subtree. . .
...but "near" in one dimension says nothing about the other!

Idea 4
BST works by partitioning the data...
... but lexical order partitions fully on one dimension before partitioning on the other.

The 2DMapiTi ADT

■ public void insert(int x, int y, T value)
Add an element to the map at point (x, y)

- public T get(int x, int y)

Retrieve the element at point (x, y)

- public Iterator<T>
range(int xlow, int xhigh, int ylow, int yhigh)
Retrieve all elements in the rectangle ([xlow, xhigh), [ylow, yhigh))
■ public $T[]$ kNearestNeighbor (int x, int y, int k) Retrieve the k elements closest to the point (x, y)

Attempt 1: Partition on both dimensions

Attempt 1: Partition on both dimensions

Each Node has 4 Children

Each Node has 4 Children

"Binary" Search Tree

■ "Bin" - prefix meaning 2

- Each node has (at most) 2 children

"Quadary" Search Tree

■ "Quad" - prefix meaning 4

- Each node has (at most) 4 children

■ Usually say: "Quad-Tree" instead

Quad Trees - Other Operations

- $\operatorname{get}(\mathrm{x}, \mathrm{y})$
- Find position corresponding to (x, y).
- Return the node if it exists.

■ insert(x, y, value)

- Find placeholder spot corresponding to (x, y).
- Create and inject new node.

Quad Trees - Challenges

Creating a balanced quad tree is hard

■ Impossible to always split collection elements evenly across all four subtrees (though depth $=O(\log N)$ is possible)

Keeping the quad tree balanced after updates is harder

■ No "simple" analog for rotate left/right.

Worst Case:
No possible way to create node with >2 nonempty subtrees.

Quad Trees - Challenges

Problem: Every node has 4 children!

Revisiting Lexical Order

Problem: Searches on lexical order partition all of one dimension first.

Revisiting Lexical Order

Idea: Alternate Dimensions

k-D Trees

All nodes at the same level partition on

k-D Trees - Find Node

public Node<T> get(int x, int y)

- if this. $x==x \wedge$ this. $y==y$
return this
■ if this.level $\% 2==1$
- if x < this. x
- else
- else
- if y < this. y
- else

```
    return this.left.get(x,y)
return this.right.get (x,y)
    return this.left.get (x,y)
return this.right.get(x,y)
```

What's the complexity?
O (depth)

k-D Trees - Depth

Key Insight: If partitioning on only one dimension, we can always find a value that partitions the space in half. ${ }^{1}$

If each tree node partitions its descendants in half, we get $d=O(\log N)$.
${ }^{1}$ Offer void if all values on that dimension are the same.

Quad Trees - Other Operations

■ $\operatorname{get}(\mathrm{x}, \mathrm{y})$

- Find position corresponding to (x, y).
- Return the node if it exists.

■ insert(x, y, value)

- Find placeholder spot corresponding to (x, y).
- Create and inject new node.

Nearest Neighbor

What if we want to find the closest element to a target point?
Problem: Can't just do a normal find; The target may not be in the tree at all.

Nearest Neighbor - Example 1

Nearest Neighbor - Example 1

Is it possible for something in the other child of $(10,4)$ to be closer?

Nearest Neighbor - Example 2

As before, find
the closest leaf

Do we need the the closest leaf.

10,4 root's left subtree?

Generalization: k-Nearest Neighbors

Finding one point can be as fast as $O(d)=O(\log N)$, but as slow as $O(N)$

What if we want to find the k-Nearest Neighbors instead?
Idea: Keep a list of the k nearest points, and the furthest point defines our "search radius"

Can generalize to $k>2$ dimensions
■ Level 1: Partition on Dimension 1
■ Level 2: Partition on Dimension 2

■ Level k: Partition on Dimension k
■ Level $\mathbf{k}+\mathbf{1}$: Partition on Dimension 1
■ Level k+2: Partition on Dimension 2
■ Level i: Partition on Dimension $((i-1) \bmod k)+1$

In practice range() and knn() become $O(n)$ for $k>3$
(If the range overlaps in even one dimension we need to search it)

Other Problems - N-Body Problem

What if we want to compute interactions between one body and every other body?

Naively, this would be $O\left(N^{2}\right)$, but likely we don't care as much about interactions with bodies that are very very far away.

Other Problems - N-Body Problem

Idea: Divide our points into a quadtree (or octree in 3 dimensions)

Do full calculations for points in the same box.

Compute a summary (e.g., total force and center of mass) for each box; treat the entire box as one point.

Runtime is now $O(N \log N)$

Other Problems — Ray/Path Tracing

Which object does this ray of light hit? Do we need to check every object? Idea: Build a hierarchy of bounding boxes (Bounding Volume Hierarchy). If theoray doesnemintersect a bounding box, we ignore it. If the BVH is balanced,

