CSE 250: The Memory Hierarchy Lecture 36

Dec 01, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

- Class Logistics

Reminders

- PA3 Implementation due Sun, Dec 3
- Course Evals Bonus
 - Get to 90% completion across all 3 sections, we'll release an exam question.
 - More details to be posted on Piazza.

Lies and Trickery!

Lies!

- Lie 1: Any array access is O(1)
 - This is the RAM model of computation
 - Simple, useful, but not perfect
 - Real-World Hardware isn't this elegant
 - The Memory Hierarchy: L1 Cache, L2 Cache, L3 Cache, RAM, SSD, HDD, Tape...
 - Non-Uniform Memory Access CPUs: AMD Ryzen
- Lie 2: The constant factors don't matter

These are useful simplifications at 50k ft, but they don't tell the whole story.

Algorithm Bounds

- Runtime Complexity
 - The algorithm takes O(...) steps/cpu cycles/time
- Memory Complexity
 - The algorithm needs *O*(...) MB of RAM
- IO Complexity
 - The algorithm performs $O(\ldots)$ accesses to slower memory.
 - Sometimes separately tracks reads and writes.
 - Sometimes considers > 2 memory speeds.

└-IO Complexity

The Memory Hierarchy (simplified)

└-IO Complexity

The Memory Hierarchy (simplified)

Array Reads

Reading an Array Element

Is the array element in cache?

- Yes: Return it (1-4 clock cycles)
- **No**: Is the array entry in RAM?
 - Yes: Load it from RAM into cache (10s of clock cycle)
 - No: Load it from SSD (100s of clock cycles)

- 1s of clock cycles: Tiny Constant
- 10s of clock cycles: So-So Constant
- 100s of clock cycles: Huge Constant

Array Reads

Reading an Array Element

It matters whether we're reading from cache, memory, or disk!

Today: Memory vs Disk

Array Reads

Ground Rules: Disk vs RAM

All data starts off in a file on disk

- Data has to be in RAM before we can access it
- Data is loaded in 4KB chunks ("pages")
- The amount of available RAM is finite.
- Deallocating a page is one instruction
 - unless it was modified and needs to be written back
- 3 features describe an algorithm
 - The number of instructions (runtime complexity)
 - The number of disk reads/writes (IO complexity)
 - The number of pages of RAM required (memory complexity)

Similar rules apply to any pair of levels of the memory hierarchy.

Map<K, V> as an Array: 2²⁰ (~ 1M) Records
64 bytes each (8 byte key, 56 byte value)
64 MB of data, 16,384 4k pages, 64 records/page
Binary Search: ~ log(2²⁰) = 20 steps.
Answer at position 0

Map<K, V> as an Array: 2^{20} (~ 1 M) Records 64 bytes each (8 byte key, 56 byte value) ■ 64 MB of data, 16,384 4k pages, 64 records/page Binary Search: $\sim \log(2^{20}) = 20$ steps. Answer at position 0 ... 13 steps, 13 loads, then....

- Steps 0-14 each load 1 page (15 pages loaded)
 - Slooooooooow...
- Steps 15-19 access the same page as step 14

Fast!

What's the memory complexity?

How does it scale with the # of records?

Complexity

- *N*: records total
- R: records size (in Bytes)
- P: page size (in Bytes)
- $C = \left\lfloor \frac{R}{P} \right\rfloor$ records per page

Binary Search Complexity (Memory)

- Stage 1: Each page is never used again, can discard immediately.
- Stage 2: All use the same page

The maximum amount of memory in use <u>at one time</u> is 1 page. The <u>Working Set</u> size is 1 page

Binary Search Complexity (IO)

- 1 page always has 64 records
 - The last 6 binary search steps are all on the same page.
 - With scaling N
 - 2²¹ records (32GB): 21 binary search steps, 16 loads
 - 2²² records (64GB): 22 binary search steps, 17 loads
 - 2²³ records (128GB): 23 binary search steps, 18 loads

Binary Search Complexity (IO)

- Overall Binary Search Runtime: O(log N) steps
- Behavior goes through two stages
 - **Stage 1**: Each request goes to a new page (e.g., 0-13)
 - $\log(N) \log(C) \ (= \log(N) \log\left(\frac{R}{P}\right))$
 - **Stage 2**: One load for all requests (e.g., 14-20)
 - log(C) steps

C is a constant; Total IO complexity is $O(\log N)$

Fence Pointer Tables

How do we improve Binary Search?

Observation 1

- 2²⁰ × sizeof(key + data) = 2²⁰ × 64 B = 64 MB of records
 vs
 2²⁰ × sizeof(key) = 2²⁰ × 8 B = 8 MB of keys
- Observation 2
 - We don't care about which array index the record is at...
 - ... only the page it's on
 - ... and each page stores a contiguous range of keys

Fence Pointers

Idea: Store a list of the greatest keys on each page in memory.

RAM: 2¹⁴ = 16,384 keys; 128 pages (Fence Pointer Table)

Disk: 16,384 pages (Actual Data)

Example

Data File (Disk):

Fence Pointer Tables

Example (Why "fence pointer"?)

Fence Pointers

Step 1: Binary search on the Fence Pointer Table

- All in-memory (assuming In Memory Fence Pointer Table)
- IO complexity = 0
- Step 2: Load page
 - One load
 - IO Complexity = 1
- **Step 3**: Binary search within page
 - All in-memory
 - IO Complexity = 0

Total IO: One page loaded (O(1))

Fence Pointers

Step 1: The entire fence pointer table is in-memory.
 The fence pointer table needs to be in-memory always.

Steps 2,3: One extra page loaded

Total Memory: Fence Pointer Table + 1 (O(N + 1) = O(N))

Fence Pointer Tables

We can do better...

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY