CSE 250 Data Structures

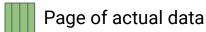
Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

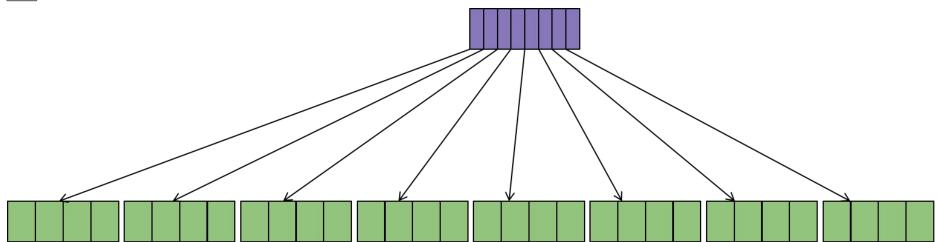
Lec 37: B+ Trees

Announcements

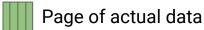
- PA3 was due last night, can turn it in as late as Tuesday
- WA5 is out now, due Sunday @ 11:59PM
- Course Evaluations plz :)

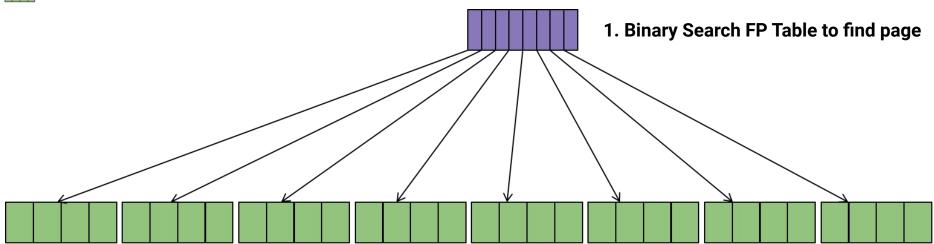
Fence pointer array (in memory)

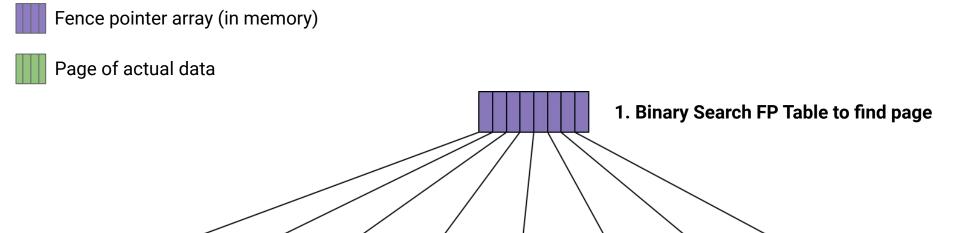




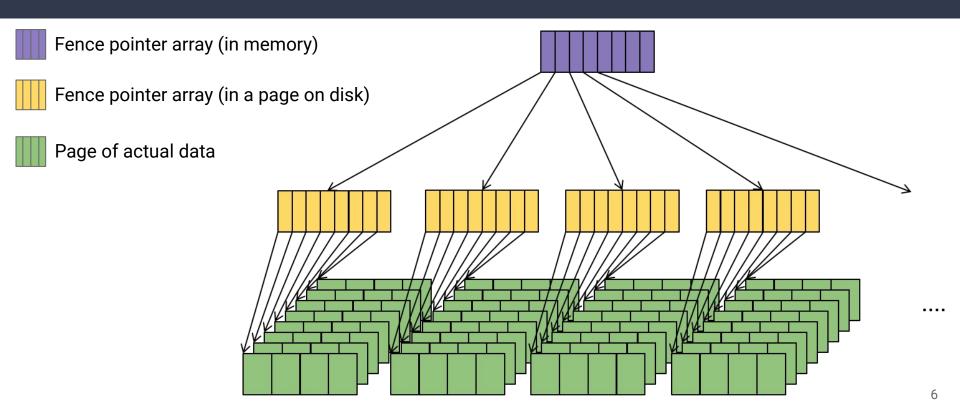
Fence pointer array (in memory)

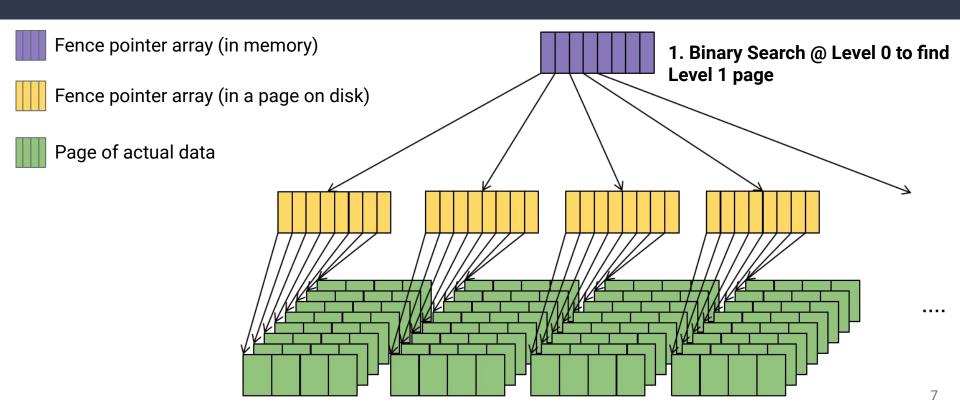


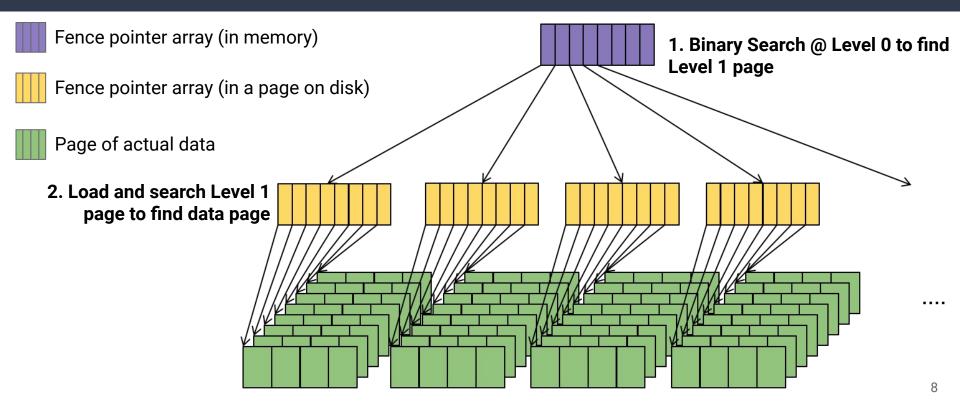


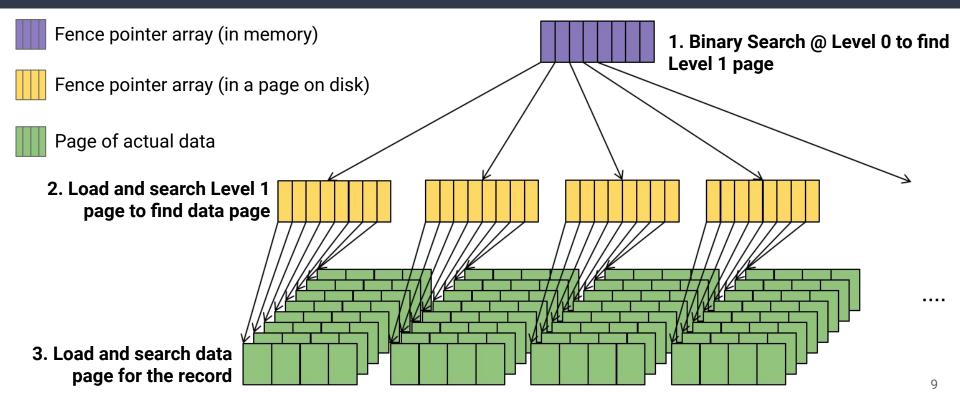


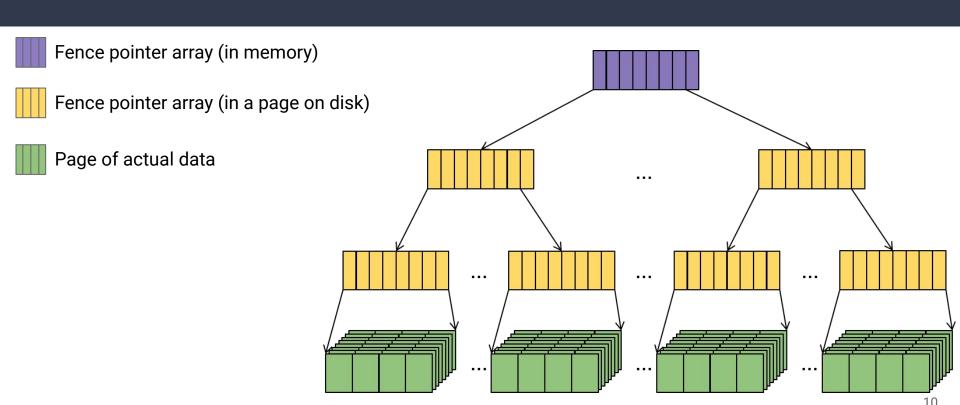
2. Load page and binary search for record

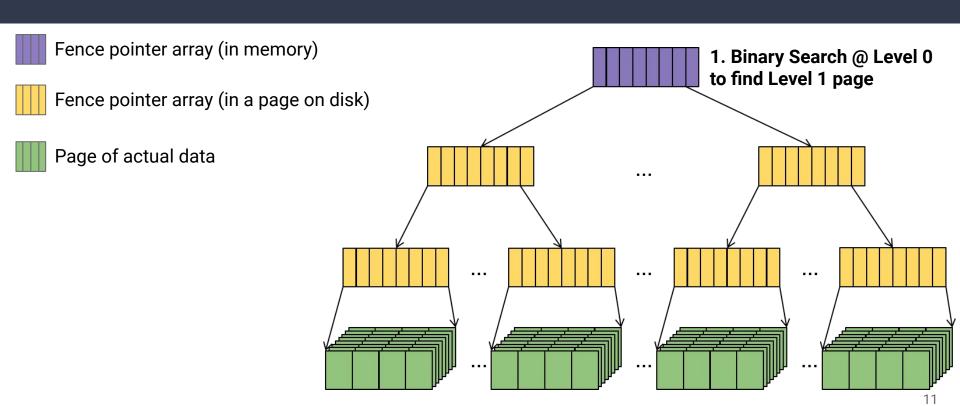


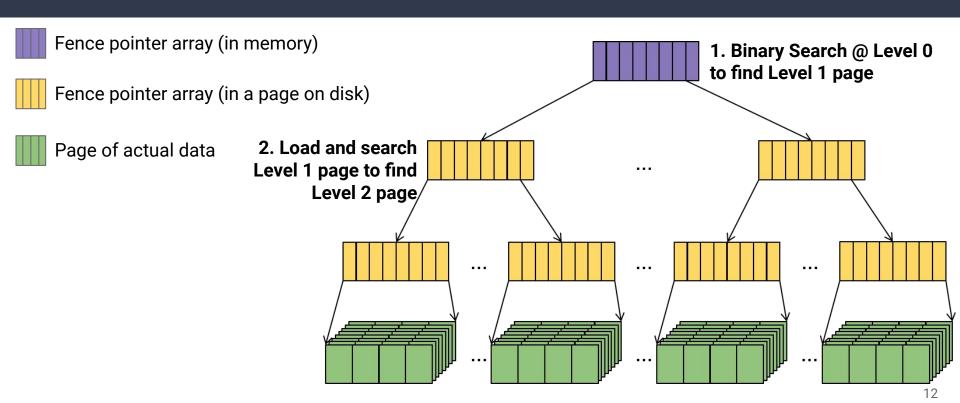


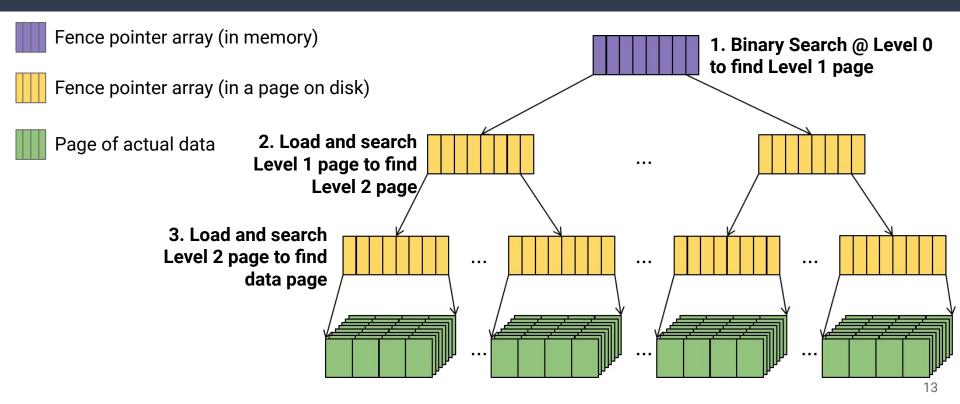


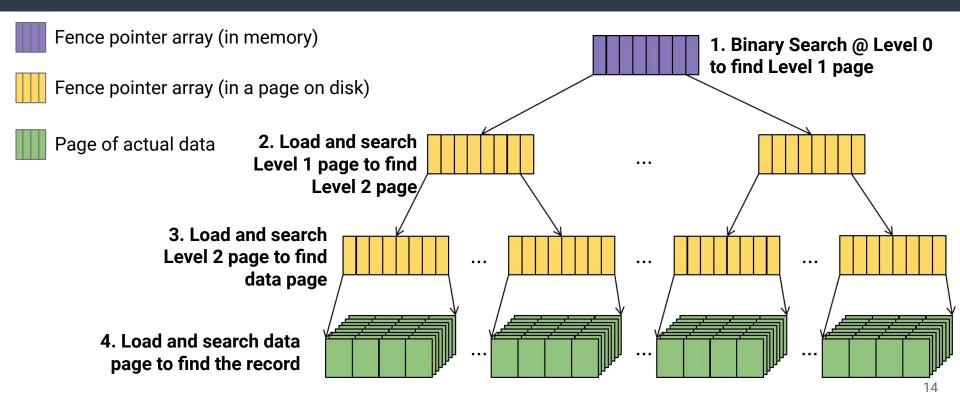




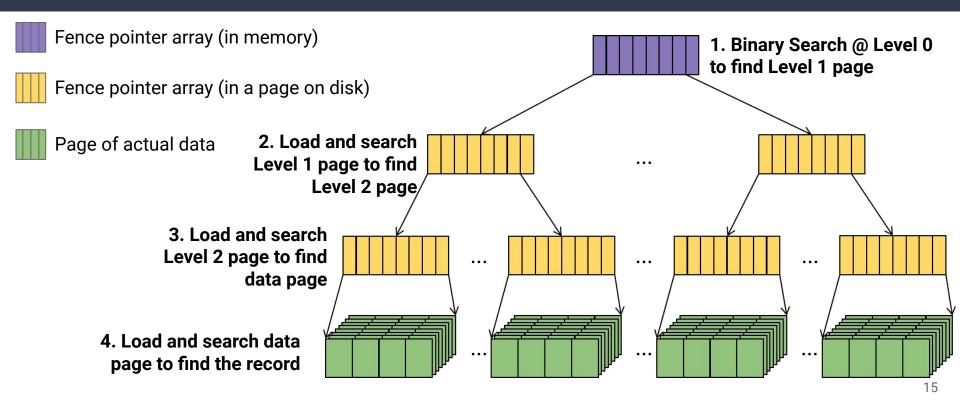








Improving on Fence Pointers ISAM Index



IO Complexity:

- 1 read at L0 (or assume already in memory)
- 1 read at L1
- 1 read at L2
- ...
- 1 read at L_{max}
- 1 read at data level

How many levels will there be (this isn't a binary tree...)

How many levels will there be (this isn't a binary tree...)

• Level 0: 1 page w/C_{key} keys

How many levels will there be (this isn't a binary tree...)

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys

How many levels will there be (this isn't a binary tree...)

- Level 0: 1 page w/C_{kev} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^2 pages w/ C_{key}^3 keys

• ..

How many levels will there be (this isn't a binary tree...)

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^2 pages w/ C_{key}^3 keys
- ...
- Level max: Up to C_{key}^{max} pages w/ C_{key}^{max+1} keys

How many levels will there be (this isn't a binary tree...)

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^2 pages w/ C_{key}^3 keys
- ...
- Level max: Up to C_{key}^{max} pages w/ C_{key}^{max+1} keys
- Data Level: Up to C_{key}^{max+1} pages w/ C_{data}^{max+1} records

$$n = C_{data} C_{key}^{max+1}$$

$$n = C_{data}C_{key}^{max+1}$$

$$\frac{n}{C_{data}} = C_{key}^{max+1}$$

$$n = C_{data}C_{key}^{max+1}$$
 $rac{n}{C_{data}} = C_{key}^{max+1}$ $\log_{C_{key}}\left(rac{n}{C_{data}}
ight) = max+1$

$$n = C_{data}C_{key}^{max+1}$$

$$\frac{n}{C_{data}} = C_{key}^{max+1}$$

$$\log_{C_{key}} \left(\frac{n}{C_{data}}\right) = max + 1$$

$$\log_{C_{key}}(n) - \log_{C_{key}}(C_{data}) = max + 1$$

$$n = C_{data}C_{key}^{max+1}$$

$$\frac{n}{C_{data}} = C_{key}^{max+1}$$

$$\log_{C_{key}} \left(\frac{n}{C_{data}}\right) = max + 1$$

$$\log_{C_{key}}(n) - \log_{C_{key}}(C_{data}) = max + 1$$

Number of Levels: $O\left(\log_{C_{key}}(n)\right)$

$$n = C_{data}C_{key}^{max+1}$$

$$\frac{n}{C_{data}} = C_{key}^{max+1}$$

$$\log_{C_{key}} \left(\frac{n}{C_{data}}\right) = max + 1$$

$$\log_{C_{key}}(n) - \log_{C_{key}}(C_{data}) = max + 1$$

Note this isn't base 2!

Number of Levels: *O*

$$O\left(\log_{C_{key}}(n)\right)$$

How much of a difference does it make to change the base of the log?

In our example we have 2²⁰ records, and 512 keys per page

$$\log_2(2^{20}) = \log_2(1,048,576) = 20$$

$$\log_{512}(2^{20}) = \log_{512}(1,048,576) \sim 2$$

How much of a difference does it make to change the base of the log?

In our example we have 2²⁰ records, and 512 keys per page

 $\log_2(1,000,000,000) \sim 30$

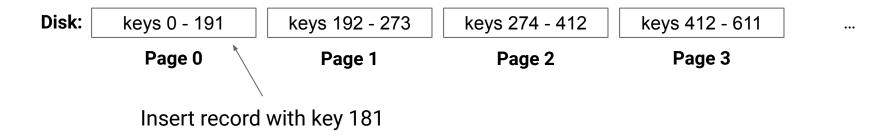
 $\log_{512}(1,000,000,000) \sim 3 \leftarrow \text{Only } \sim 3 \text{ page reads for 1 billion records!}$

Like Binary Search, but "Cache-Friendly"

- Still takes $O(\log(n))$ steps
- Still requires O(1) memory (1 page at a time)
- Now requires $\log_{Ckev}(n)$ loads from disk $(\log_{Ckev}(n) \ll \log_2(n))$

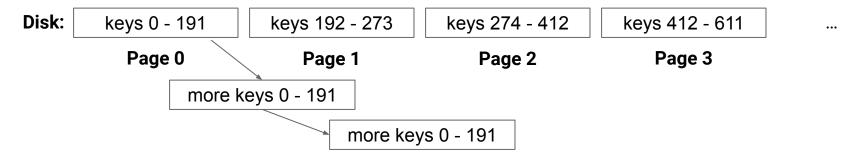
What if the data changes?





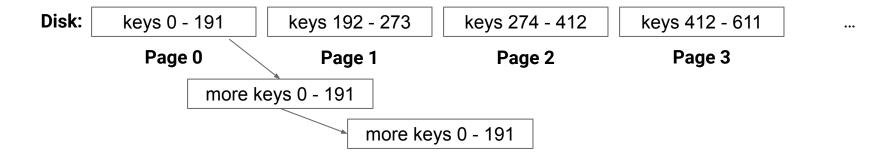
Idea: Keep "free" space on each page for new records

... what happens when it fills up?



Idea: Linked lists to store overflow

...but now our I/O complexity is O(n) again...



Idea: We'll have to rearrange the tree

Dynamic Page Allocation

Treat the disk as an ADT:

PageID allocate()

Allocates a page in the data file and returns its position

T load<T>(PageID page)

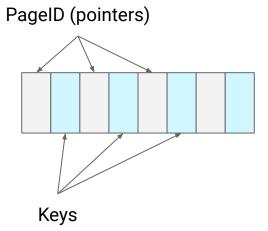
Reads in a 4k chunk of data

void write<T>(PageID page, T data)

Writes a 4k chunk of data to the page

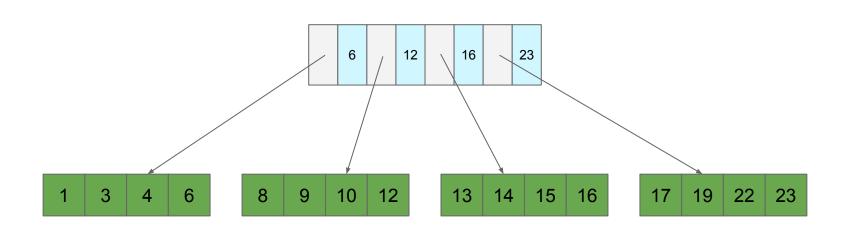
Pointers to Pages

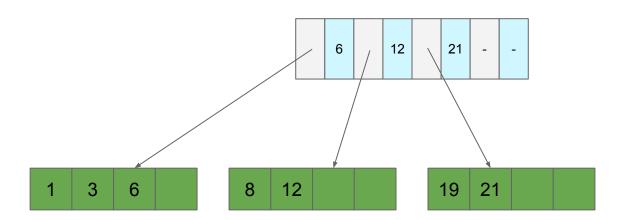
Our pages are now dynamic, need "pointers" instead of indices

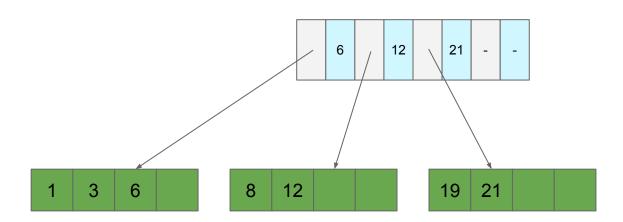


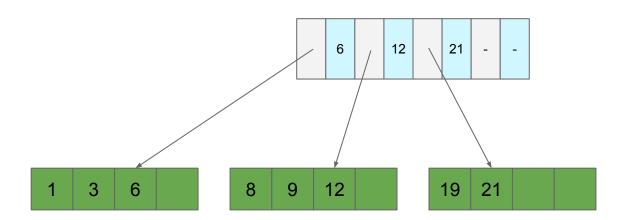
Pointers to Pages

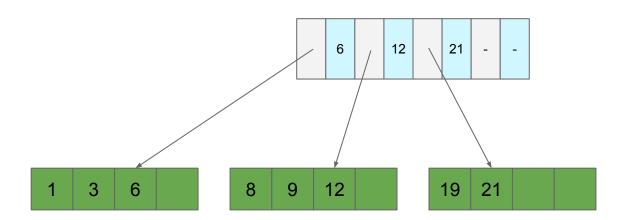
Our pages are now dynamic, need "pointers" instead of indices

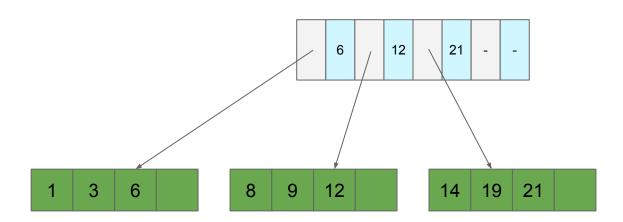


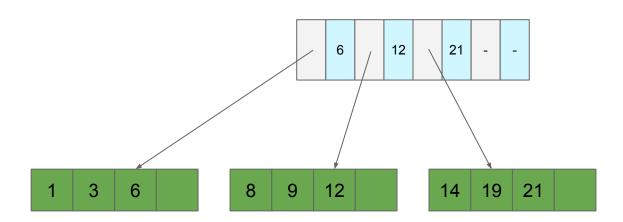


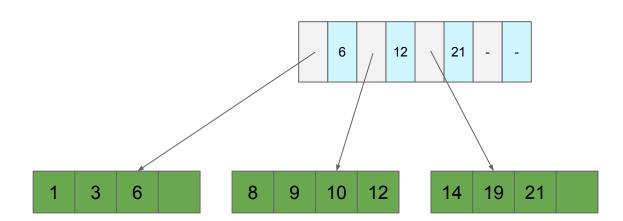




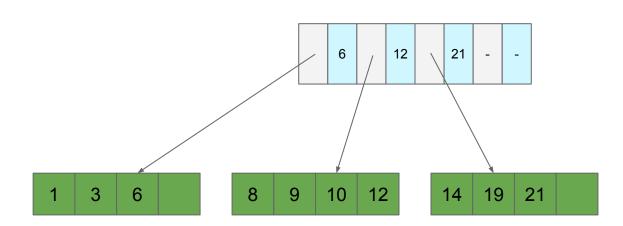


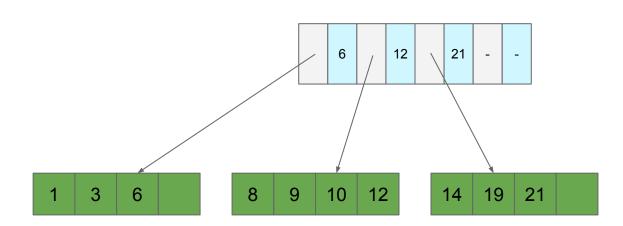


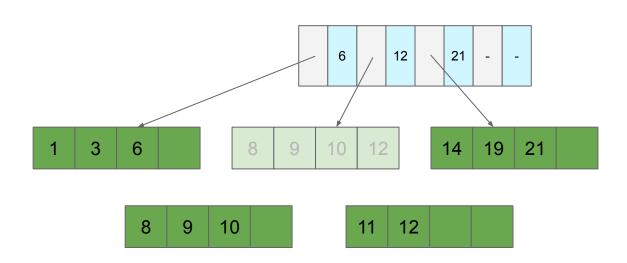


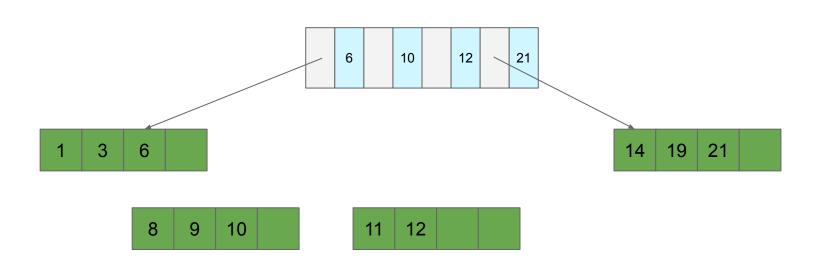


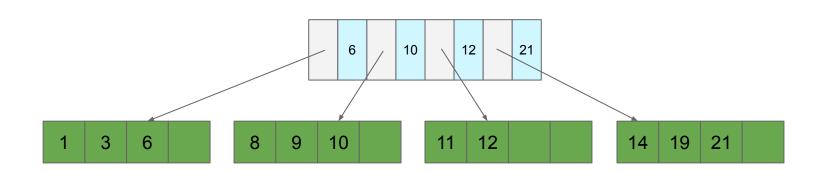
Add 11? Where does it go?



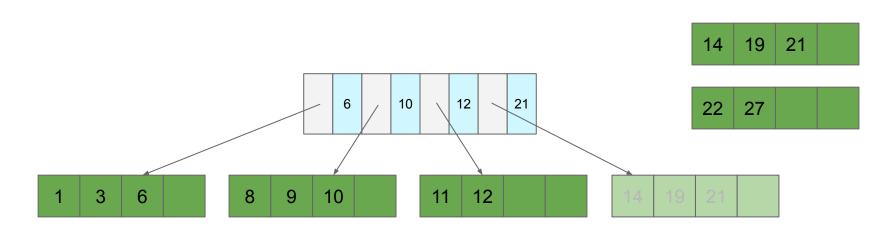




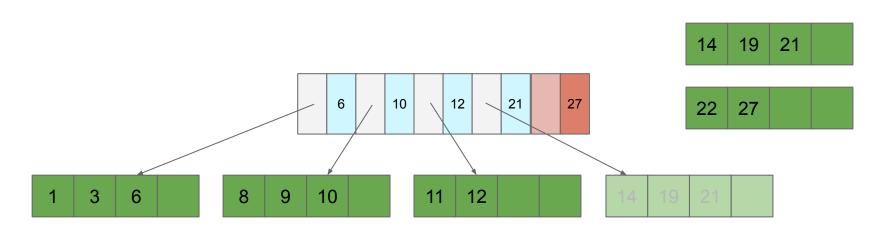




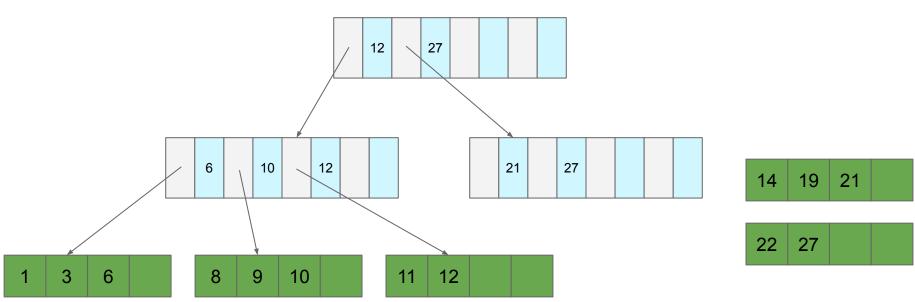
Add 22, 27?



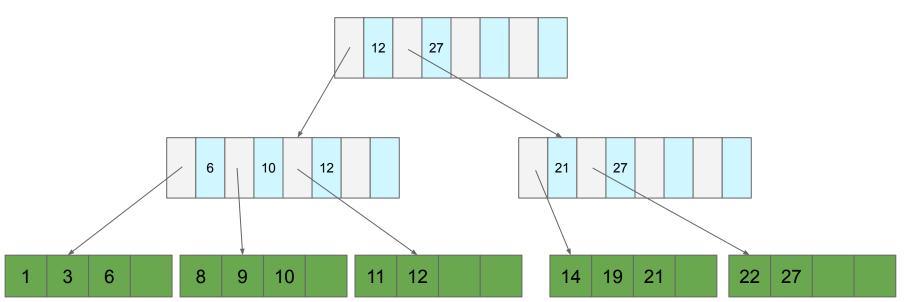
Add 22, 27?



Add 22, 27? Split the page of pointers!



Add 22, 27? Split the page of pointers!

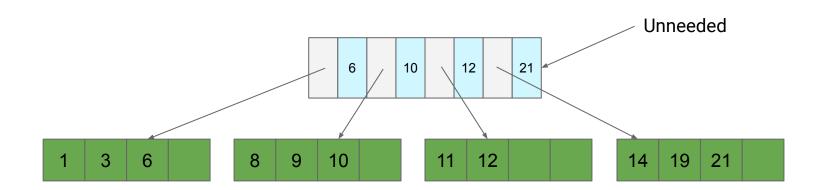


B+ Tree (Almost)

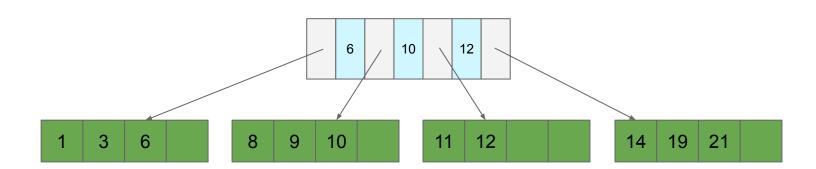
Insert

- 1. Find the page the record belongs on
- Insert record there
- 3. If full, "split" the page
 - a. Insert additional separator in the parent directory
 - b. If full, split the parent directory and repeat
 - i. If root is split, create a new root

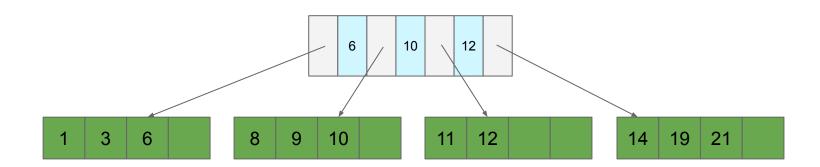
Observation: Don't need the largest key



Observation: Don't need the largest key

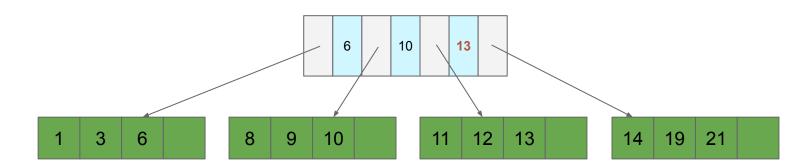


Question: What if separators are mispositioned? What if we insert 13?

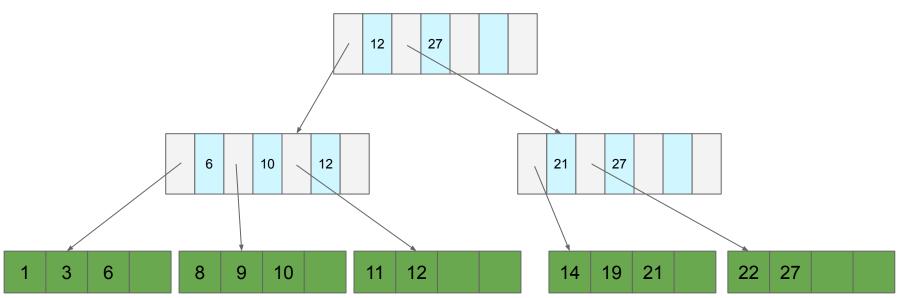


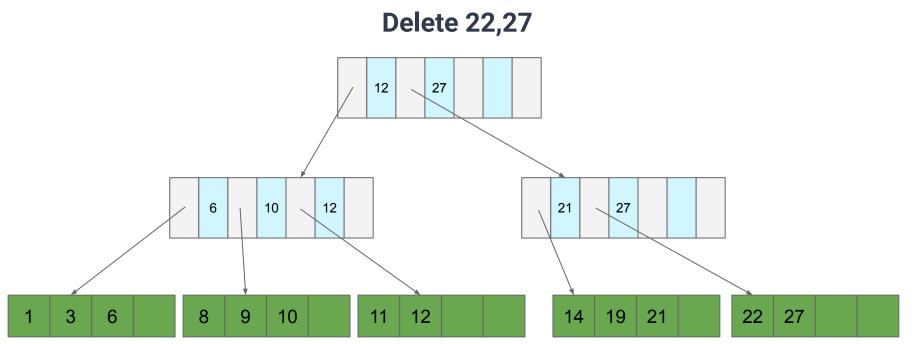
Question: What if separators are mispositioned? What if we insert 13?

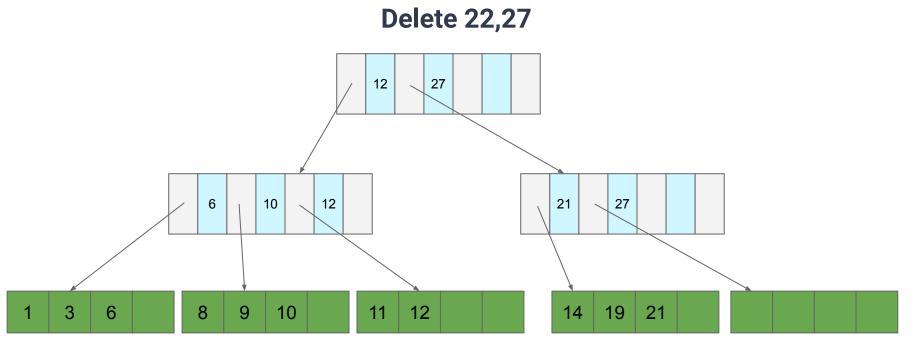
Idea: Steal space from neighbor (and update separator)

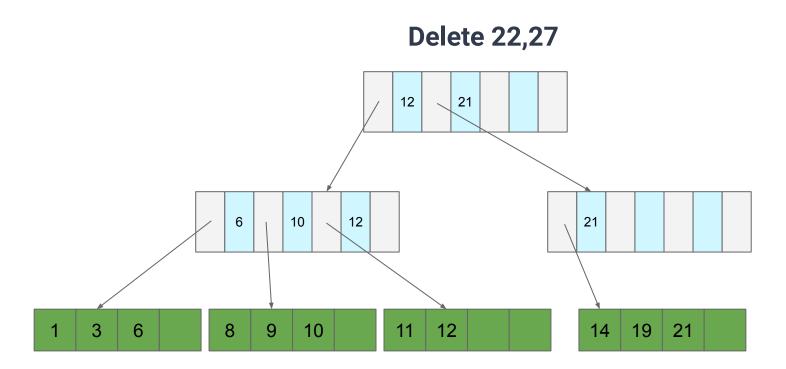


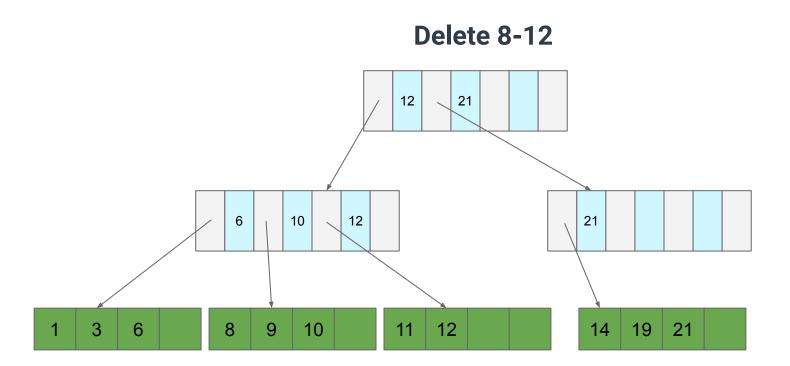
Question: What if we delete records?

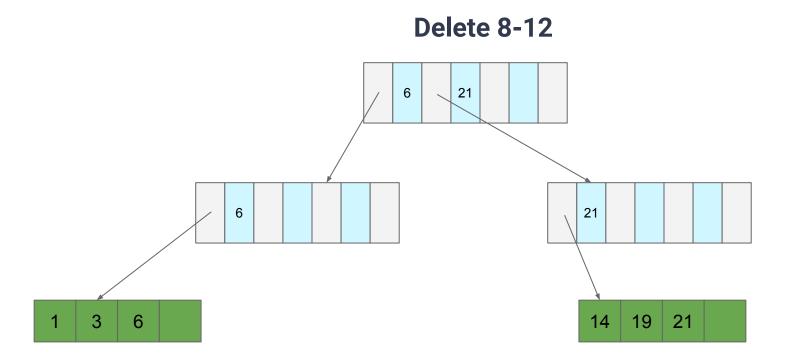




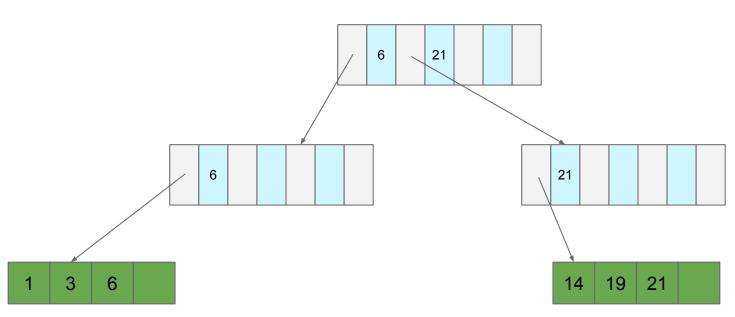








Problem: We have O(log(n)) reads per search for the biggest n in the tree's history

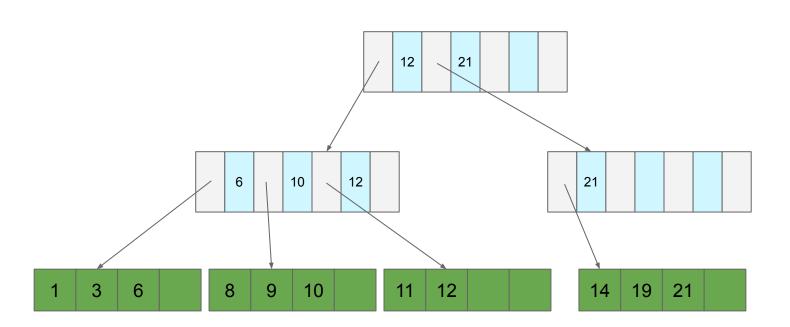


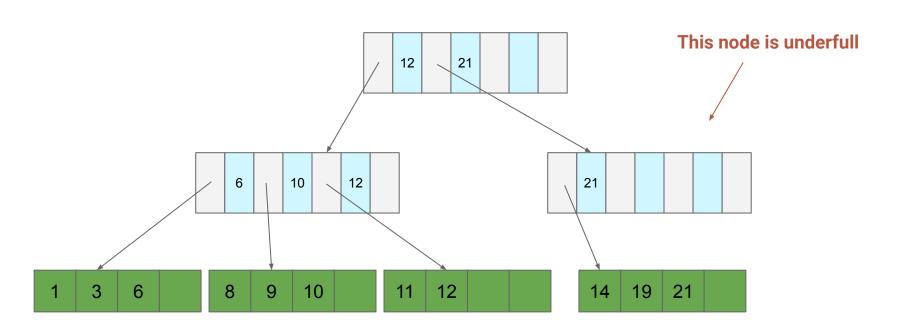
Enforce that each directory and data node must have ≥ c/2 records

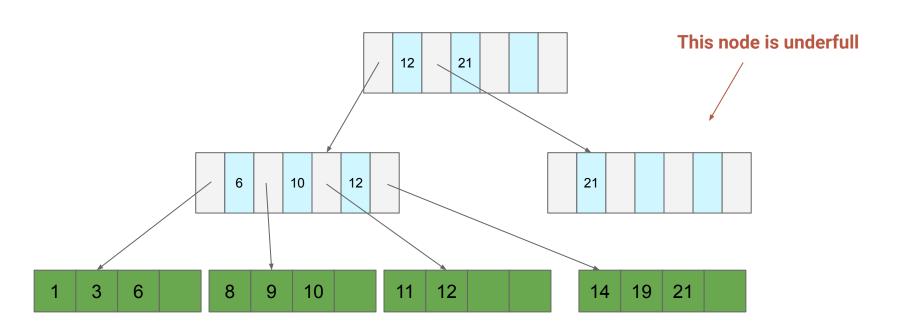
• **Exception:** the root

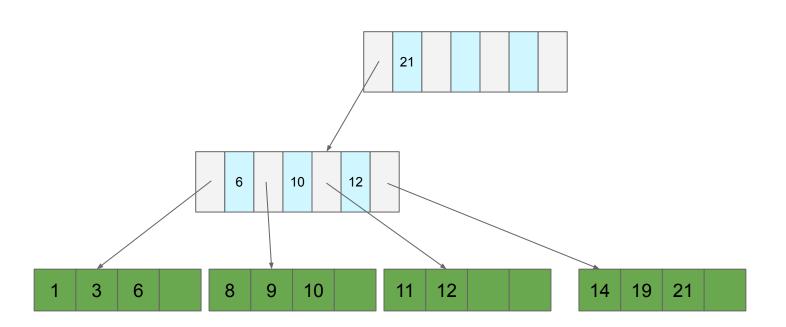
What does this do to tree depth?

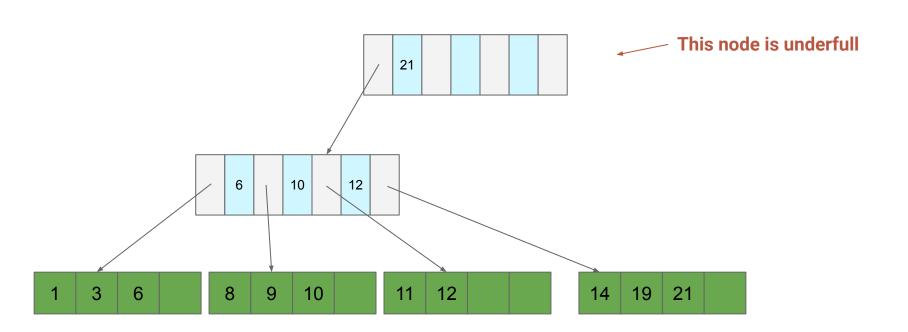
• $O(\log_{c/2}(n))$ (as compared to $O(\log_{c}(n))$ when the tree is static)

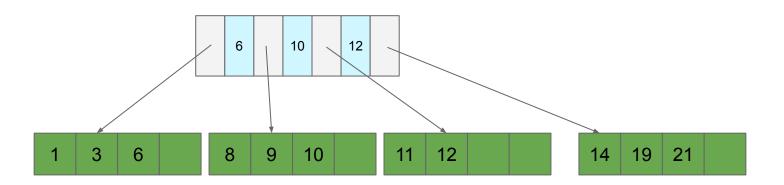












Delete

- 1. Find the page the record is on
- 2. Delete the record (if present)
- 3. If underfull, "merge" the page with a neighbor
 - a. If either neighbor has > c/2 entries then steal instead
 - b. If parent underfull, repeat
 - If root, then drop the lowest layer