
CSE 250: The Memory Hierarchy (contd.)

CSE 250: The Memory Hierarchy (contd.)
Lecture 37

Dec 04, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

Class Logistics

Reminders

WA3 due Sun, Dec 3

PA3 showed you that even ‘anonymized’ data can be
problematic
WA3: Look for other cases of problems

Course Evals Bonus

Get to 90% completion across all 3 sections, we’ll release an
exam question.
Section C: 17/112 as of Friday (15%)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

Recap

Lies!

Lie 1: Any array access is O(1)
This is the RAM model of computation

Simple, useful, but not perfect

Real-World Hardware isn’t this elegant

The Memory Hierarchy: L1 Cache, L2 Cache, L3 Cache,
RAM, SSD, HDD, Tape...
Non-Uniform Memory Access CPUs: AMD Ryzen

Lie 2: The constant factors don’t matter

These are useful simplifications at 50k ft, but they don’t tell the whole
story.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Algorithm Bounds

Runtime Complexity

The algorithm takes O(. . .) steps/cpu cycles/time

Memory Complexity

The algorithm needs O(. . .) MB of RAM

IO Complexity

The algorithm performs O(. . .) accesses to slower memory.
Sometimes separately tracks reads and writes.
Sometimes considers > 2 memory speeds.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

The Memory Hierarchy (simplified)

Cache

Memory (RAM)

Solid State Drives/NVRAM

Hard Disk Drives

B
igger F

as
te
r

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

The Memory Hierarchy (simplified)

SSD/HDD

RAM

Disk Page (∼ 4KB)

Cache

Cache Line (∼ 64B)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Binary Search

16,384 pages

Step 0

Load 8192

Step 1

Load 4096

Step 2

Load 2048

Step 3

Load 1024

. . .

64 records (1 page)

Step 14

Load 0

Step 15

(Already Loaded)

. . .

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Binary Search

Steps 0-14 each load 1 page (15 pages loaded)

Slooooooooooow. . .

Steps 15-19 access the same page as step 14

Fast!

Runtime Complexity: O(logN)

Memory Complexity: O(1)

IO Complexity: O(logN)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

How do we improve Binary Search?

Observation 1: Keys are usually much smaller than full
records.

Observation 2: We always need to load the page with the
record we want on it, so our main goal should be to reduce
the number of IOs needed to find page.

Idea: Track the greatest key from each page.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

How do we improve Binary Search?

There should be exactly one page where:

The key we’re looking for is lesser than or equal to the
greatest key on the page

The key we’re looking for is greater than the greatest key on
the page.

Once we find this page, we only need to do one IO.

Idea: Keep the list of greatest keys in memory always.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointer Table

Data File (Disk):

keys 0–178

Page 0

keys 192–273

Page 1

keys 274–412

Page 2

keys 458–611

Page 3

Fence Pointer Table (RAM):

178

0

273

1

412

2

611

3

...

...

Binary Search > 273, ≤ 412

Load Page 2

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Why “Fence Pointer”?

keys 0–178

Page 0

keys 192–273

Page 1

keys 274–412

Page 2

keys 458–611

Page 3

. . .

178 273 412 611 ...

Fences

Pointers

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointers

Runtime Complexity: O(logN)

Memory Complexity: O(N)

IO Complexity: 1 = O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointers

We can do better...

Idea: Store the fence pointer table on disk.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointer Table

Data File (Disk):

keys 0–178

Page 0

keys 192–273

Page 1

... 50,811–50,956

Page 511

50,992–51,200

Page 512

51,221–51,322

Page 513

...

Fence Pointer Table (Disk):

178

0

273

1

...

...
50,956

511

51,200

512

51,322

513

...

...
...

Binary Search > 51200, ≤ 51322

Load Page 513

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointers (On Disk)

512 × 8 byte keys per 4KB page (29 keys per page)

220 records at 64 records per page = 214 pages of records

214 fence pointer keys = 25 pages of fence pointers

Total pages searched:

Fence Pointer Table: log2(2
5) = 5 pages

Data File: 1 page
Total: 6 pages (vs 15 pages for simple binary search).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

IO Complexity

Fence Pointers (On Disk)

Runtime Complexity: O(logN)

Memory Complexity: O(1)

IO Complexity: O(logN)
... but with a much better constant

Searching the on-disk fence pointer table is better than searching the
raw data, but there’s still lots of wasted IO.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

Improving on Fence Pointers

C records C records C records C records C records C records C records C records

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

Improving on Fence Pointers

C recordsC recordsC recordsC recordsC recordsC recordsC recordsC records

C recordsC recordsC recordsC recordsC recordsC recordsC recordsC records

C recordsC recordsC recordsC recordsC recordsC recordsC recordsC records

. . .

. . .

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

ISAM Indexes

Repeat layering as needed.

This is called an ISAM index.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

ISAM Indexes

Read and Binary Search the level 0 index page
to get a level 1 index page.

Read and Binary Search the level 1 index page
to get a level 2 index page.

. . .

Read and Binary Search the level ℓ index page
to get a data page.

Read and Binary Search the data page to get the record.

If the tree is ℓ+ 1 levels deep, ℓ+ 1 IOs will be required.
At any given time, only one page is required: O(1) memory.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

ISAM Index

How many levels are required?

If we can fit K keys into an index page, then ...

The level 1 index page cuts the search space down to: 1
K1N

The level 2 index page cuts the search space down to: 1
K2N

The level 3 index page cuts the search space down to: 1
K3N

. . .

The data page can’t hold more than C records.

If we have ℓ index levels, we can hold N = K ℓC records:

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

ISAM Index

If we have ℓ index levels, we can hold K ℓC records:

N = K ℓC

N

C
= K ℓ

logK

(
N

C

)
= logK (K

ℓ)

logK

(
N

C

)
= ℓ

We need logK (NC ) = O(logK N) index levels.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

ISAM Indexes

ISAM Index

Runtime Complexity: O(logN)

Memory Complexity: O(1)

IO Complexity: O(logK N)

Contrast with O(log2 N) for naive on-disk binary search.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

But...

What if you need to insert a new record?

Idea: Reserve some extra space on each data page.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

Extra Space

6 12 23

1 3 6 8 9 12 14 19 21 22 23

Add 6

Add 9

Add 14

Add 23

Add 22?
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

Extra Space

6 12 21 24

1 3 6 8 9 12 14 19 21

22 23 24 25 26

25 26

26

Add 24

Add 25

Add 26

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

Extra Space

6 12 21

24 26

1 3 6 8 9 12 14 19 21

22 23 24

25 26

21 26

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

B+ Trees

Resizing a tree like this guarantees balance.

Only ‘root splits’ ever change the depth.

The entire tree has a consistent depth.

... but no more than logK N ‘page splits’ per insert.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

B+ Tree Deletion

... but what if we allow deletion?

Any data page could end up empty!

Idea: Require every data page be at least 50% full.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

B+ Tree Deletion

Idea: Require every data page be at least 50% full.

If a page drops to < 50%, steal a record from an adjacent
page.

If no adjacent pages to steal from, merge with an adjacent
page.

... which deletes an entry from the parent

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: The Memory Hierarchy (contd.)

B+ Trees

B+ Tree Invariants

Every data/index node except the root is at least 50% full.

Insert
Find the insertion point.
Insert the record.
‘Split’ if needed.
Recursively split at ancestors as needed.

Delete
Find the record.
Delete the record.
Steal/merge if needed.
Recursively steal/merge at ancestors as needed.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY


