CSE 250: The Memory Hierarchy (contd.)

CSE 250: The Memory Hierarchy (contd.)
Lecture 37

Dec 04, 2023

CSE 250: The Memory Hierarchy (contd.)

L Class Logistics

Reminders

m WA3 due Sun, Dec 3

m PA3 showed you that even ‘anonymized’ data can be
problematic
m WA3: Look for other cases of problems
m Course Evals Bonus

m Get to 90% completion across all 3 sections, we'll release an
exam question.
m Section C: 17/112 as of Friday (15%)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L Recap

Lies!

m Lie 1: Any array access is O(1)
m This is the RAM model of computation
m Simple, useful, but not perfect
m Real-World Hardware isn't this elegant

m The Memory Hierarchy: L1 Cache, L2 Cache, L3 Cache,
RAM, SSD, HDD, Tape...
® Non-Uniform Memory Access CPUs: AMD Ryzen

m Lie 2: The constant factors don't matter

These are useful simplifications at 50k ft, but they don’t tell the whole J
story.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Algorithm Bounds

m Runtime Complexity

m The algorithm takes O(...) steps/cpu cycles/time
m Memory Complexity

m The algorithm needs O(...) MB of RAM
m 10 Complexity

m The algorithm performs O(...) accesses to slower memory.
m Sometimes separately tracks reads and writes.
m Sometimes considers > 2 memory speeds.

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

The Memory Hierarchy (simplified)

Cache

Memory (RAM)

193881g

Solid State Drives/NVRAM

Hard Disk Drives

Faster

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

The Memory Hierarchy (simplified)

Cache
Cache Line (~ 64B)
RAM
Disk Page (~ 4KB)
SSD/HDD

CSE 250: The Memory Hierarchy (contd.)
Lio Complexity

Binary Search

16,38 oages
Step 2 Step 1 Step 0
Load 2048 Load 4096 Load 8192
Step 3
Load 1024

64 records (1 page)

Step 15 Step 14
(Already Loaded) Load 0

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Binary Search

m Steps 0-14 each load 1 page (15 pages loaded)
m Slooooooooooow. . .

Steps 15-19 access the same page as step 14
m Fast!

Runtime Complexity: O(log N)

Memory Complexity: O(1)
IO Complexity: O(log N)

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

How do we improve Binary Search?

m Observation 1: Keys are usually much smaller than full
records.

m Observation 2: We always need to load the page with the
record we want on it, so our main goal should be to reduce
the number of 10s needed to find page.

Idea: Track the greatest key from each page.

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

How do we improve Binary Search?

There should be exactly one page where:

m The key we're looking for is lesser than or equal to the
greatest key on the page
m The key we're looking for is greater than the greatest key on
the page.
Once we find this page, we only need to do one 10.

Idea: Keep the list of greatest keys in memory always.

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Fence Pointer Table

Binary Search > 273, < 412

Fence P

inter Table (RAM):

178 | 273

412

m‘ ‘

01

2 3

Data File (Disk):

] keys 0-178 H keys 192-273 H keys 274-412 H keys 458-611

Page 0 Page 1 Pagde 2 Page 3

Load Page 2

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Why “Fence Pointer”?

‘178‘273'412‘611' ‘

Pointers ‘\\\\\\\\\\

keys 0-178 H keys 192-273 H keys 274-412 H keys 458-611 \

Page 0 Page 1 Page 2 Page 3

Fences

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Fence Pointers

m Runtime Complexity: O(log N)
m Memory Complexity: O(N)
m |0 Complexity: 1=0(1)

CSE 250: The Memory Hierarchy (contd.)
Lio Complexity

Fence Pointers

We can do better...

Idea: Store the fence pointer table on disk.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Fence Pointer Table

Binary Search > 51200, < 51322

Fence Pointer Table (Disk):

178

0 1 511 512 513
Data File (Disk):

273

| 50,956 ‘ ’ 51,200 | 51,322 | ‘

’ keys 0-178 H keys 192-273 " 50,811-50,956 H 50,992-51,200 H 51,221-51,322 ‘

Page 0 Page 1 Page 511 Page 512 Page 513

Load Page 513

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Fence Pointers (On Disk)

512 x 8 byte keys per 4KB page (2° keys per page)

220 records at 64 records per page = 2'* pages of records

214 fence pointer keys = 25 pages of fence pointers

Total pages searched:
m Fence Pointer Table: log,(2°) =5 pages
m Data File: 1 page
m Total: 6 pages (vs 15 pages for simple binary search).

CSE 250: The Memory Hierarchy (contd.)

Lio Complexity

Fence Pointers (On Disk)

m Runtime Complexity: O(log N)
m Memory Complexity: 0(1)
m |O Complexity: O(log N)

... but with a much better constant

Searching the on-disk fence pointer table is better than searching the
raw data, but there’s still lots of wasted 10.

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

Improving on Fence Pointers

Vv
C records C records C records l C records ‘ l C records ‘ l C records ‘ C records C records

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

Improving on Fence Pointers

L L NENNEN

J A44=||
L

C records C records

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

ISAM Indexes

Repeat layering as needed.

This is called an ISAM index.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

ISAM Indexes

m Read and Binary Search the level 0 index page
to get a level 1 index page.

Read and Binary Search the level 1 index page
to get a level 2 index page.

m Read and Binary Search the level £ index page
to get a data page.

m Read and Binary Search the data page to get the record.

If the tree is ¢ + 1 levels deep, ¢ + 1 10s will be required.
At any given time, only one page is required: O(1) memory.

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

ISAM Index

How many levels are required?

If we can fit K keys into an index page, then ...

m The level 1 index page cuts the search space down to: %N

m The level 2 index page cuts the search space down to: =N

Xw‘l—l XNI—i

m The level 3 index page cuts the search space down to:
[T

m The data page can't hold more than C records.

If we have £ index levels, we can hold N = K*C records:

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

ISAM Index

If we have / index levels, we can hold K¢C records:

N=K‘C
N
=kt
C
N
logk <C = log (K*)

We need log K(¥) = O(log N) index levels.

@© 2023 Oliver Kennedy, Eric Mikid

CSE 250: The Memory Hierarchy (contd.)
L_ISAM Indexes

ISAM Index

m Runtime Complexity: O(log N)
m Memory Complexity: 0(1)
m 10 Complexity: O(logk N)

m Contrast with O(log, N) for naive on-disk binary search.

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

But...

What if you need to insert a new record?

Idea: Reserve some extra space on each data page.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

Extra Space

12|23
11316 12 141191212223
Add 6
Add 9
Add 14
Add 23

Add 227

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

Extra Space

121212426
25|26
221232412526
1136 12 14119 (21
Add 24
Add 25

Add 26

CSE 250: The Memory Hierarchy (contd.)

L B+ Trees

Extra Space

21

26

21

24

26

25

26

22

23

24

12

14

19

21

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

B+ Trees

Resizing a tree like this guarantees balance.
m Only ‘root splits’ ever change the depth.
m The entire tree has a consistent depth.

m ... but no more than log, N ‘page splits’ per insert.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

B+ Tree Deletion

... but what if we allow deletion?
Any data page could end up empty!

Idea: Require every data page be at least 50% full.

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

B+ Tree Deletion

Idea: Require every data page be at least 50% full.
m If a page drops to < 50%, steal a record from an adjacent
page.
m If no adjacent pages to steal from, merge with an adjacent
page.
m ... which deletes an entry from the parent

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: The Memory Hierarchy (contd.)
L B+ Trees

B+ Tree Invariants

Every data/index node except the root is at least 50% full.
m Insert
m Find the insertion point.
m Insert the record.
m ‘Split’ if needed.
m Recursively split at ancestors as needed.
m Delete
m Find the record.
m Delete the record.
m Steal/merge if needed.
m Recursively steal /merge at ancestors as needed.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

