CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu 208 Capen Hall

Lec 38: Lossy Sets and Bloom Filters

Announcements

- WA5 is out now, due Sunday @ 11:59PM
- Fill out your course evaluations!
- Comments about the TAs? Fill out a TA evaluation as well!

Recall the Set ADT

Set has add, contains and remove...
What if we didn't need contains to be perfect?
What would that entail? Why would that be useful? What would we gain?

Motivation

Let's say a hot new restaurant just opened up, but it's an hour away. You want to eat there, but don't want to make the drive only to find out they have no tables...what do you do?

Motivation

Let's say a hot new restaurant just opened up, but it's an hour away. You want to eat there, but don't want to make the drive only to find out they have no tables...what do you do?

- Call the restaurant
- If they say they have no tables, don't go. You've saved yourself the trip - If they say they do...drive there. By the time you get there, they might have run out of tables, but you would have made the drive anyways

Motivation

Another Example: Reading from disk is expensive
Even when using a B+ Tree, if you ask for an element that doesn't exist you will need to do $\log _{C}(n)$ disk reads

Idea: Keep an in-memory summary of the data

- If the summary says the key is in a particular layer, access the layer
- If not, skip the layer and end the search early

What guarantees do we need for this to work?

Motivation

- If our summary incorrectly says the key exists (false positive) \checkmark
- We will read the layer only to find out it's not there
- Extra work, but doesn't break anything...we would have done that work anyways

Motivation

- If our summary incorrectly says the key exists (false positive) \checkmark
- We will read the layer only to find out it's not there
- Extra work, but doesn't break anything...we would have done that work anyways
- If our summary incorrectly says the key doesn't exist (false negative) x
- We will stop the algorithm and return an incorrect answer

Motivation

- If our summary incorrectly says the key exists (false positive) \checkmark
- We will read the layer only to find out it's not there
- Extra work, but doesn't break anything...we would have done that work anyways
- If our summary incorrectly says the key doesn't exist (false negative) x
- We will stop the algorithm and return an incorrect answer

False positives are OK (not ideal though), false negatives are not

Lossy Sets

LossySet<T>

void add(T t)

- Insert t into the set (kind of)
boolean contains(T t)
- If t is in the set ALWAYS return true
- If t is not in the set USUALLY return false (returning true is OK)

Lossy Set

What does this gain for us?
Idea: If contains doesn't always need to be right, we don't need to store everything!

A Trivial Example

```
1 class TrivialLossySet<T> extends LossySet<A> {
2 void add(T t) {/* do nothing */ }
    boolean contains(T t) { return true; }
4}
```

Does this work?

A Trivial Example

```
1 class TrivialLossySet<T> extends LossySet<A> {
2 void add(T t) {/* do nothing */ }
    boolean contains(T t) { return true; }
4}
```

Does this work? Yes! ...but not really that useful

An Improvement

Idea: Take inspiration from HashTables

- Bucketize the keys in some way
- Keep one bit per bucket
- $\operatorname{add}(\mathrm{T}$ t): Set a's bucket to 1
- contains (T t): Return true if the bit for t's bucket is set

Setting Bins

add("Frankenstein")

Setting Bins

add("Frankenstein")

Setting Bins

add("Frankenstein")
add("Get Out")

Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")

Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
A B C D E F G HI J K L M N O P Q R S T UV WXYZ

Calling Contains

```
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")?
```


contains("Scream")?

Calling Contains

add("Frankenstein")
contains("Scream")? T
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")?
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T
contains("Saw")? T
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

```
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
```

contains("Scream")? T
contains("Saw")? T
contains("The Candyman")?
\square
A B C DE F GHI J K L M N O P Q R S T UV W X Y Z

Calling Contains

```
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
```

contains("Scream")? T
contains("Saw")? T
contains("The Candyman")? F
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T
contains("Saw")? T
contains("The Candyman")? F contains("Dracula")? F contains("Friday the 13th")? T
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
So this works...how can we improve its accuracy?
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Motivating Example

Raise your hand to answer the following questions
Take note of who else raises their hand at the same time

Which Pokemon do you prefer?

1. Squirtle
2. Pikachu
3. Charizard
4. What the heck is a Pokemon?

Which movie genre do you prefer?

1. Comedy
2. Action
3. Horror
4. Drama

Which sport would you rather play?

1. Football (American)
2. Soccer
3. Hockey
4. Please don't make me touch grass...

Lossy Sets

Observation: We have a lot of overlap on just one feature (question). Less overlap if we consider two at the same time. Even less if we consider only those who match on all three.

How many buckets would our HashTable need to store info for all three features?

Lossy Sets

Observation: We have a lot of overlap on just one feature (question). Less overlap if we consider two at the same time. Even less if we consider only those who match on all three.

Idea: Use the same set of buckets for all features

- ie store movies by first AND last letter in the title

Setting Bins

add("Frankenstein")

Setting Bins

add("Frankenstein")

Setting Bins

add("Frankenstein")
add("Get Out")

Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")

Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
A B C DEFGHI JKLMNOPQRSTUVWXYZ

Calling Contains

```
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")?
```

\square
A B C DE F GHI J K L M N O P Q R S T UV W X Y Z

Calling Contains

add("Frankenstein")
contains("Scream")? T
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
\square
A B C DE F GHI J K L M N O P Q R S T UV W X Y Z

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")?
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")? F
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")? F
contains("Dracula")? F
contains("Friday the 13th")? T
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")? F contains("Dracula")? F contains("Friday the 13th")? T contains("The Candyman")?
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

Calling Contains

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
contains("Scream")? T contains("Saw")? F contains("Dracula")? F contains("Friday the 13th")? T contains("The Candyman")? T
\square
A B C DEFGHIJKLMNOPQRSTUVWXYZ

False Positives

Notice we still got a false positive (but for a different reason)

- We can never avoid false positives, just want to make them less likely

False Positives

Notice we still got a false positive (but for a different reason)

- We can never avoid false positives, just want to make them less likely
- If we use more hash functions, it becomes less likely that movie A and B have the exact same set of buckets

False Positives

Notice we still got a false positive (but for a different reason)

- We can never avoid false positives, just want to make them less likely
- If we use more hash functions, it becomes less likely that movie A and B have the exact same set of buckets
- BUT if we use more hash functions, we fill up more buckets which make it more likely that movie A's buckets are filled in by other movies We will therefore need to find a good balance (more on that later)

Hash Functions

Observation: Our current example is not very uniform...movie titles are much more likely to start with some letters and not others

Idea: Use hash functions!

```
class LossyHashSet1<T> extends LossySet<T> {
    private int size;
    private boolean[] bits;
    public LossyHashSet1(int s) {
        size = s; bits = new boolean[size];
    }
    public void add(T t) {
        int bucket = t.hashCode() % size;
        bits[bucket] = true;
    }
    public boolean contains(T t) {
        int bucket = t.hashCode() % size;
        return bits[bucket];
    }
}
```

Lossy Hash Set w/1 Hash Function

Lossy Hash Set

Assume we add (a) then contains (b)
What does contains(b) return, and when?

- True: When hash(a) == hash(b) \% size
- False: When hash(a) != hash(b) \% size

What is the probability of each, with \boldsymbol{N} buckets?

Lossy Hash Set

Assume we add (a) then contains (b)
What does contains(b) return, and when?

- True: When hash(a) == hash(b) \% size
- False: When hash(a) != hash(b) \% size

What is the probability of each, with \mathbf{N} buckets?

- True: $1 / \mathrm{N} \leftarrow$ only wrong $1 / \mathrm{N}$ of the time
- False: $(\mathrm{N}-1) / \mathrm{N}$

```
    1 class LossyHashSet2<T> extends LossySet<T> {
    2
    public int hash1(T t) { /* ??? */ }
    public int hash2(T t) { /* ??? */ }
    public void add(T t) {
        bits[hash1(t) % size] = true;
        bits[hash2(t) % size] = true;
        }
        public boolean contains(T t) {
            return bits[hash1(t) % size] && bits[hash2(t) % size];
        }
12
```

Lossy Hash Set w/2 Hash Functions

Lossy (Double) Hash Set

Assume we add (a) then contains (b)
What does contains(b) return, and when?

- True: When hash ${ }_{1}(\mathrm{a})==$ hash $_{1}(\mathrm{~b})$ AND hash $_{2}(\mathrm{a})==$ hash $_{2}(\mathrm{~b})(\%$ size $)$,
- False: Otherwise

What is the probability of each, with \mathbf{N} buckets?

Lossy (Double) Hash Set

Assume we add (a) then contains (b)
What does contains(b) return, and when?

- True: When hash $1_{1}(\mathrm{a})==$ hash $_{1}(\mathrm{~b})$ AND hash $_{2}(\mathrm{a})==$ hash $_{2}(\mathrm{~b})(\%$ size $)$
- False: Otherwise

What is the probability of each, with \boldsymbol{N} buckets?

- True: $\sim(1 / \mathrm{N})^{2} \quad \leftarrow$ only wrong $1 / \mathrm{N}^{2}$ of the time!
- False: !((N-1)/N) ${ }^{2}$

Multiple Hash Functions

So how do we make multiple hash functions?

```
1 static int SEED1 = 123104912035;
static int SEED2 = 406923456234; // Avoid sequentially adjacent seeds
3
public int hash1(T t) {
return (SEED1 ^ t.hashCode()).hashCode(); // Use ^ instead of +
6}
public int hash2(T t) {
8 return (SEED1 6 t.hashCode()).hashCode();
9
```


Multiple Hash Functions

So how do we make multiple hash functions?
We can make as many as we want!

```
1 static int SEEDS = [123104912035, 406923456234, 304173420014, ...]
2 public int hashK(int k, T t) \{
3 return (SEEDS[k] ^ t.hashCode()).hashCode(); // Use ^ instead of +
4 \}
```

```
    class LossyHashSetK<T> extends LossySet<T> {
2
    public void add(T t) {
        for (int k = 0; k < K; k++) {
            bits[hashK(k, t) % size] = true;
        }
    }
    public boolean contains(T t) {
        for (int k = 0; k < K; k++) {
            if (bits[hashK(k, t) % size] == false) return false;
            }
            return true;
    }
4 }
```

Lossy Hash Set w/k Hash Functions

```
class BloomFilter<T> extends LossySet<T> {
2
    public void add(T t) {
        for (int k = 0; k < K; k++) {
            bits[hashK(k, t) % size] = true;
        }
    }
    public boolean contains(T t) {
                                    This is called a Bloom Filter!
        for (int k = 0; k < K; k++) {
            if (bits[hashK(k, t) % size] == false) return false;
        }
        return true;
    }
14
```

Lossy Hash Set w/k Hash Functions \rightarrow A Bloom Filter!

Bloom Filter

BloomFilters have two parameters:

- SIZE $\quad \leftarrow$ Number of buckets in the bit array
- Intuitively: More space means fewer collisions
- HASHES \leftarrow Number of hash functions
- Intuitively: More hash functions means...
- A higher chance that one of b's bits is unset (lower false+ chance)
- More bits get set (higher false+ chance)

Bloom Filter

BloomFilters have two parameters:

- SIZE \leftarrow Number of buckets in the bit array
- Intuitively: More space means fewer collisions
- HASHES \leftarrow Number of hash functions
- Intuitively: More hash functions means...
- A higher chance that one of b's bits is unset (lower false+ chance)
- More bits get set (higher false+ chance)

Increasing SIZE trades space for a lower false+ rate For HASHES there's a sweet spot in the middle

Bloom Filters: Collision Probability

The probability that 1 bit is set by 1 hash function:

Bloom Filters: Collision Probability

The probability that 1 bit is not set by 1 hash function:

$$
1-\frac{1}{\text { SIZE }}
$$

Bloom Filters: Collision Probability

The probability that 1 bit is not set by HASHES hash functions:

$$
\left(1-\frac{1}{\text { SIZE }}\right)^{\text {HASHES }}
$$

Bloom Filters: Collision Probability

The probability that 1 bit is not set by HASHES hash functions
...over \boldsymbol{n} distinct calls to add:

$$
\left(1-\frac{1}{\text { SIZE }}\right)^{\text {HASHES } \cdot n}
$$

Bloom Filters: Collision Probability

The probability that 1 bit is set by at least one of HASHES hash functions ...over \boldsymbol{n} distinct calls to add:

$$
1-\left(1-\frac{1}{\text { SIZE }}\right)^{\text {HASHES } \cdot n}
$$

Bloom Filters: Collision Probability

The probability that all HASHES randomly selected bits of element \mathbf{b} ...are set by at least one of the HASHES hash functions
... over \boldsymbol{n} distinct calls to add:

$$
\left(1-\left(1-\frac{1}{\text { SIZE }}\right)^{\text {HASHES } \cdot n}\right)^{\text {HASHES }}
$$

Bloom Filters: Collision Probability

The probability that all HASHES randomly selected bits of element \mathbf{b} ...are set by at least one of the HASHES hash functions
... over \boldsymbol{n} distinct calls to add:

$$
\approx\left(1-e^{-\frac{\text { Hashes } \cdot n}{\text { SIZE }}}\right)^{\text {HASHES }}
$$

Bloom Filter: Collision Probability

Optimum at HASHES $=c \cdot \frac{\text { SIZE }}{N}$

Bloom Filter: Analysis

$$
\begin{aligned}
& \text { HASHES }=c \cdot \frac{\text { SIZE }}{n} \\
& n=c \cdot \frac{\text { SIZE }}{\text { HASHES }}
\end{aligned}
$$

n and SIZE are linearly related (SIZE $=\mathbf{O}(n)$), but...

Bloom Filters: In Practice

$\frac{\text { SIZE }}{n}=5 \Longrightarrow \sim 10 \%$ collision chance
$\frac{\text { SIZE }}{n}=10 \Longrightarrow \sim 1 \%$ collision chance

10 bits per element vs:

- 32 bits for one integer (3 to 1 savings)
- 64 bits for one double/long (6 to 1 savings)
- 512 bits for a 64 byte record (50 to 1 savings)

