
CSE 250: Bloom Filters

CSE 250: Bloom Filters
Lecture 38

Dec 06, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Class Logistics

Reminders

WA3 due Sun, Dec 10

PA3 showed you that even ‘anonymized’ data can be
problematic
WA3: Look for other cases of problems

Course Evals Bonus

Get to 90% completion across all 3 sections, we’ll release an
exam question.
Section C: 24/112 as of Friday (22%)

Do you like this class, especially the last 2 lectures?

Look at CSE 410 (soon to be CSE 350)

Do you like/hate this class?

Email Eric and me about being a TA!

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Use Case: Reading Data From Disk

Checking disk to see if a record is present is slow if you don’t know
that it exists.

Even B+ Trees require at least one IO to tell you a record
isn’t there.

Idea: Keep an in-memory summary of the data.

If the summary says the key is present: Access disk.

If the summary says the key is not present: Return ”record
does not exist”

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

In Memory Summary

Version 1: Keep a list of all keys in the list in memory.

What ADT is appropriate? A Set

What data structures can implement a set?

Sorted Array (O(logN) access)

Balanced Binary Tree (O(logN) access, update)

Hash Table (Expected O(1) access, update)

How much memory is needed? O(N)

A list of keys is basically a bigger Fence Pointer Table.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

Set<T>

public void add(T e): Add the element e.

public boolean contains(T e): Return true if e is in the
set.

add(e) a set contains(e)

What if we didn’t need contains to be perfect?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

Idea: Keep an in-memory summary of the data.

If the summary says the key is present: Access disk.

A mistake here means we do unnecessary work.
Not ideal, but we go to disk without the summary.

If the summary says the key is not present: Return ”record
does not exist”

A mistake here means the read returns a wrong result.
This would cause a bug (e.g., in a B+Tree).

We may be able to get a win if we trade rare false positives for space.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

LossySet<T>

public void add(T e): Add the element e.

public boolean contains(T e):

if e is in the set, always return true.
if e is not in the set, usually return true.

contains(e) is allowed to return true, even if e is not in the set.
. . . but ideally, this happens as rarely as possible.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

1 lossySet.add("Westley")

2 lossySet.add("Buttercup")

3 lossySet.add("Inigo")

1 System.out.println(lossySet("Westley")) // → true

1 System.out.println(lossySet("Inigo")) // → true

1 System.out.println(lossySet("Vizini")) // → false

1 System.out.println(lossySet("Fezzik")) // → true

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

Key Insight: If contains doesn’t need to always be right, the
lossy set doesn’t need to store everything.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

1 public class TrivialLossySet<T> implements LossySet<T>

2 {

3 public void add(T e) { /* do nothing */ }

4 public boolean contains(T e) { return true; }

5 }

The trivial lossy set is correct, but not useful.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

Idea: Bucket the keys

First letter of the string

Ranges of values

Hash values (mod number of buckets)

Implementation: Store each bucket as one bit.

add(e): Set the bit for a’s bucket to 1.

contains(e): Return true if the bit for a’s bucket is 1.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Sets

1 public class HashtogramLossySet<T> implements LossySet<T>

2 {

3 static int SIZE = 256; // 256 is arbitrary

4 boolean[] bits = new boolean[SIZE]

5

6 public void add(T e) {

7 int bucket = e.hashCode % SIZE;

8 bits[bucket] = true;

9 }

10

11 public boolean contains(T e) {

12 int bucket = e.hashCode % SIZE;

13 return bits[bucket];

14 }

15 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

HashtogramLossySet Example

1 add("foo")

2 contains("bar")

What does contains("bar") return?

true iff "foo".hashCode % SIZE == "bar".hashCode % SIZE

false iff "foo".hashCode % SIZE != "bar".hashCode % SIZE

What is the probability of each result?

true with probability 1
SIZE

false with probability SIZE−1
SIZE

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Hashtogram Lossy Set

Problem: Collisions:

One inserted value causes 1
SIZE

of all calls to contains to
return true.

This number gets worse with more inserted values.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Hash Sets

Class Activity: Who was born in?
(Participation Optional)

≥ 2005?

2004?

2003?

2002?

2001?

≤ 2000?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Lossy Hash Sets

Class Activity: What is the color of your shirt/top?
(Participation Optional)

White?

Black?

Red?

Green?

Blue?

Other?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Hash Set Collisions

There were fewer collisions with two features than one.

... but we need more space to store two features than one

Idea: Use the same set of histograms for both features.

Example:

Birth Year (mod 25)

Sibling’s birth year (mod 25)

Each Record is assigned to two buckets.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Double Hashtogram Lossy Set

1 public class DoubleHashtogram<T> implements LossySet<T>

2 {

3 static int SIZE = 256; // 256 is arbitrary

4 boolean[] bits = new boolean[SIZE]

5

6 public int hash1(T e) { /* ... */ }

7 public int hash2(T e) { /* ... */ }

8

9 public void add(T e) {

10 bits[hash1(e) % SIZE] = true;

11 bits[hash2(e) % SIZE] = true;

12 }

13

14 public boolean contains(T e) {

15 // ???

16 }

17 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Double Hashtogram Lossy Set

bits[hash1(e)% SIZE] bits[hash2(e)% SIZE] contains(e)

true true true

true false false

false true false

false false false

This is AND: bits[hash1(e)% SIZE] && bits[hash2(e)% SIZE]

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Double Hashtogram Lossy Set

1 public class DoubleHashtogram<T> implements LossySet<T>

2 {

3 static int SIZE = 256; // 256 is arbitrary

4 boolean[] bits = new boolean[SIZE]

5

6 public int hash1(T e) { /* ... */ }

7 public int hash2(T e) { /* ... */ }

8

9 public void add(T e) {

10 bits[hash1(e) % SIZE] = true;

11 bits[hash2(e) % SIZE] = true;

12 }

13

14 public boolean contains(T e) {

15 bits[hash1(e) % SIZE] && bits[hash2(e) % SIZE]

16 }

17 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Double Hashtogram Lossy Set Example

1 add("foo")

2 contains("bar")

What does contains("bar") return?
true iff hash1("foo") == hash1("bar") AND

hash2("foo") == hash2("bar")1

false otherwise

What is the probability of each result?

true with probability ∼
(

1
SIZE

)2
false with probability ∼

(
SIZE−1
SIZE

)2
1mod size

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Lossy Sets

Double Hashtogram Lossy Set

Which chance of collision is preferable?

1

N

1

N2

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Generating Hash Functions

How do we get 2 hash functions?

1 public int hash1(T e){

2 return (1 + (e.hashCode)).hashCode

3 }

4 public int hash2(T e){

5 return (2 + (e.hashCode)).hashCode

6 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Generating Hash Functions

How do we get 2 hash functions?

1 static int SEED1 = 123104912035;

2 static int SEED2 = 406923456234;

3

4 public int hash1(T e){

5 return (SEED1 + (e.hashCode)).hashCode

6 }

7 public int hash2(T e){

8 return (SEED2 + (e.hashCode)).hashCode

9 }

Avoid sequentially adjacent values.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Generating Hash Functions

How do we get 2 hash functions?

1 static int SEED1 = 123104912035;

2 static int SEED2 = 406923456234;

3

4 public int hash1(T e){

5 return (SEED1 ^ (e.hashCode)).hashCode

6 }

7 public int hash2(T e){

8 return (SEED2 ^ (e.hashCode)).hashCode

9 }

Use bitwise-XOR ()̂ instead of addition (+)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Generating Hash Functions

How do we get K hash functions?

1 static int SEED1 = 123104912035;

2 static int SEED2 = 406923456234;

3 static int SEED3 = 908057230543;

4

5 public int hash1(T e){

6 return (SEED1 ^ (e.hashCode)).hashCode

7 }

8 public int hash2(T e){

9 return (SEED2 ^ (e.hashCode)).hashCode

10 }

11 public int hash3(T e){

12 return (SEED3 ^ (e.hashCode)).hashCode

13 }

We can generate as many hash functions as needed.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Generating Hash Functions

How do we get K hash functions?

1 static int SEEDS = [

2 123104912035, 406923456234, 908057230543, ...

3]

4

5 public int kthHash(int k, T e)

6 {

7 return (SEEDS[k] ^ e.hashCode).hashCode

8 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters

Bloom Filters

Parameters

SIZE bits

HASHES hash functions

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters

Bloom Filters

1 class BloomFilter<T> extends LossySet<T>

2 {

3 int SIZE = /* ... */ ;

4 int HASHES = /* ... */ ;

5 boolean[] bits = new boolean[SIZE];

6

7 public void add(T e) {

8 for(k = 0; k < HASHES; k++) {

9 bits(kthHash(k, e) % SIZE) = true;

10 }

11 }

12

13 public boolean contains(T e) {

14 /* ??? */

15 }

16 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters

Bloom Filters

1 class BloomFilter<T> extends LossySet<T>

2 {

3 int SIZE = /* ... */ ;

4 int HASHES = /* ... */ ;

5 boolean[] bits = new boolean[SIZE];

6 public void add(T e) {

7 for(k = 0; k < HASHES; k++) {

8 bits(kthHash(k, e) % SIZE) = true;

9 }

10 }

11 public boolean contains(T e) {

12 for(k = 0; k < HASHES; k++) {

13 if(bits(kthHash(k, e) % SIZE)) { return false; }

14 }

15 return true;

16 }

17 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters

Bloom Filter Parameters

How do we set a bloom filter’s parameters?

SIZE

Intuitively: More space means fewer collisions

HASHES
Intuitively: More hash functions means. . .

. . .More chances for one of b’s bits to be unset.
(lower collision chance)

. . .More bits set (higher collision chance).

Increasing SIZE trades space for a lower false positive rate.
For HASHES, there’s a midpoint that minimizes collision chance

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that 1 bit is set by 1 hash function.

1

SIZE

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that 1 bit is not set by 1 hash function.

1− 1

SIZE

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that 1 bit is not set by HASHES hash functions.

(
1− 1

SIZE

)k

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that 1 bit is not set by HASHES hash functions.
. . . over N distinct calls to add.

(
1− 1

SIZE

)HASHES·N

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that 1 bit is set by at least one of HASHES hash
functions.

. . . over N distinct calls to add.

1−
(
1− 1

SIZE

)HASHES·N

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that all HASHES randomly selected bits of element b
. . . are set by at least one of HASHES hash functions.

. . . over N distinct calls to add.

(
1−

(
1− 1

SIZE

)HASHES·N
)HASHES

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

The probability that all HASHES randomly selected bits of element b
. . . are set by at least one of HASHES hash functions.

. . . over N distinct calls to add.

≈
(
1− e−

HASHES·N
SIZE

)HASHES
The chance of collision in a Bloom filter with parameters
HASHES, SIZES after inserting N elements.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

≈
(
1− e−

HASHES·N
SIZE

)HASHES
As e

HASHES·N
SIZE grows, the chance of collision shrinks.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

SIZE
N

Optimum at HASHES = c · SIZEN

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Analysis

Bloom Filters: Analysis

HASHES = c · SIZE
N

N = c · SIZE

HASHES

N and SIZE are linearly related (O(N) buckets required)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters in Practice

Bloom Filters: In Practice

SIZE
N = 5 → ∼ 10% collision chance.

SIZE
N = 10 → ∼ 1% collision chance.

10 bits vs

32 bits for one integer (3 to 1 savings)

64 bits for one double/long (6 to 1 savings)

512 bits for a 64 byte record (50 to 1 savings)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Bloom Filters

Bloom Filters in Practice

Bloom Filters: In Practice

vs B+Tree or Binary Search implementing Set

O(HASHES · costhash ≈ O(1) vs O(logN · costcompare)
No directory pages required (better memory/IO)

vs Hash Table implementing Set

Unqualified O(HASHES · costhash ≈ O(1) vs Expected
O(costhash
No ’fill factor’ (constant factor extra memory required)

vs Array implementing Set

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	Lossy Sets
	Generating Hash Functions
	Bloom Filters
	Analysis
	Bloom Filters in Practice

