CSE 250: Midterm Review 3 Lectures 39, 40

Dec 8 and 11, 2023

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Class Logistics

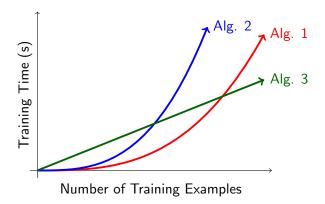
Reminders

- WA3 due Sun, Dec 10
 - PA3 showed you that even 'anonymized' data can be problematic
 - WA3: Look for other cases of problems
- Course Evals Bonus
 - Get to 90% completion across all 3 sections, we'll release an exam question.
 - Section C: 24/112 as of Friday (22%)
- Do you like this class, especially the last 3 lectures?
 - Look at CSE 410 (soon to be CSE 350)
- Do you like/hate this class?
 - Email Eric and me about being a TA!

Exam Day

- Do bring...
 - Writing implement (pen or pencil)
 - One note sheet (up to $8\frac{1}{2} \times 11$ inches, double-sided)
- Do not bring...
 - Bag (you will be asked to leave it at the front of the room)
 - Computer/Calculator/Watch/etc...
- Wait outside before the exam starts so we can prepare.
 - You will be told when to enter.
- There will be assigned seating.
 - Seating charts will be posted on the doors and projector.
 - See the seat numbers on the chairs.

Runtime



Some Notation

- N: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary
- *T*(*N*): The runtime of 'some' implementation of the algorithm.
 - Some... correct implementation.

We care about the "shape" of T(N) when you plot it.

Class Names

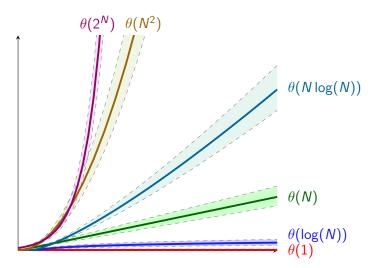
- $T(N) \in \ldots$
 - ... $\theta(1)$: Constant
 - ... $\theta(\log(N))$: Logarithmic
 - ... $\theta(N)$: Linear
 - ... $\theta(N \log(N))$: Log-Linear
 - ... $\theta(N^2)$: Quadratic
 - ... $\theta(N^k)$ (for any $k \ge 1$): Polynomial
 - ... $\theta(2^N)$: Exponential

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

Complexity Classes

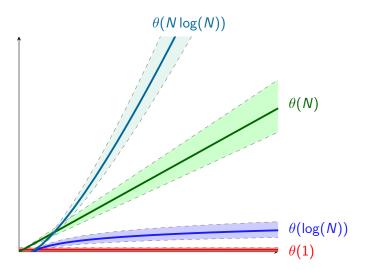


Complexity Bounds

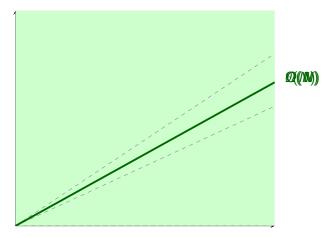
- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'bigger' complexity classes

 $O(f(N)) \cap \Omega(f(N)) = \theta(f(N))$

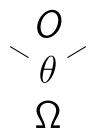
Complexity Bounds



Complexity Bounds



Rules of Thumb



© Aleksandra Patrzalek, 2012

Complexity Bounds

 $g(N) \in O(f(N))$ (f is an upper bound for g) if and only if:

- You can pick an N₀
- You can pick a c
- For all $N > N_0$: $g(N) \le c \cdot f(N)$

 $g(N) \in \Omega(f(N))$ (f is a lower bound for g) if and only if:

- You can pick an N₀
- You can pick a c
- For all $N > N_0$: $g(N) \ge c \cdot f(N)$

 $g(N) \in \theta(f(N))$ if and only if:

- $g(N) \in \Omega(f(N))$
- $g(N) \in O(f(N))$

Rules of Thumb

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

What complexity class is F(N) in?

 $f_1(N) + f_2(N)$ is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

F(N) is in the greatest of any $\theta(f_i(N))$

We say the biggest f_i is the dominant term.

Multi-Class Functions

$$\mathcal{T}(N) = egin{cases} heta(1) & ext{if } N ext{ is even} \ heta(N) & ext{if } N ext{ is odd} \end{cases}$$

What is the complexity class of T(N)?

- $T(N) \in O(N)$ is a **tight** bound.
- $T(N) \in \Omega(1)$ is a **tight** bound.

If the tight Big-O and Big- Ω bounds are different, the function is not in ANY complexity class. (Big-Theta doesn't exist).

Does Big-Theta Exist?

 $N + 2N^2$ belongs to one complexity class. ($\theta(N^2)$) $5N + 10N^2 + 2^N$ belongs to one complexity class ($\theta(2^N)$)

 $\begin{cases} 2^{N} & \text{if } rand() > 0.5 \\ N & \text{otherwise} \end{cases} \text{ does not belong to one complexity class.}$

- Usually $\theta(f_1(N) + f_2(N) + ...)$ is based on the dominant term
- If you see cases (i.e., '{'), it's probably multi-class.

Multi-Class Functions

lf...

- $g(N) \in O(f(N))$ is a **tight** upper bound
- $g(N) \in \Omega(f'(N))$ is a **tight** lower bound
- $f'(N) \not\in \theta(f(N))$

... then there is no θ bound for g(N) (g is multi class)

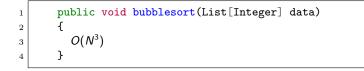
Remember: Addition does <u>not</u> make a function multi-class.

(A tight $\Omega(f(N))$ is the dominant (biggest) term being summed)

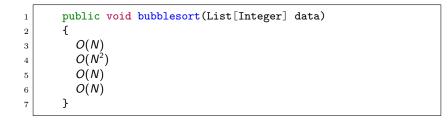
Rules of Thumb

- Lines of Code: Add Complexities
- Loops: Multiply Complexity by the Loop Count
- If/Then: Cases block '{'

```
public void bubblesort(List[Integer] data)
1
2
       Ł
          int N = data.size();
3
         for(int i = N - 2; i >= 0; i--)
4
         ł
5
            for(int j = i; j <= N - 1; j++)
6
            Ł
7
              if(data.get(j+1) < data.get(j))</pre>
8
              Ł
9
                int temp = data.get(j);
10
                data.set(j, data.get(j+1));
11
                data.set(j+1, temp);
12
13
            }
14
15
       }
16
```



```
1 public void bubblesort(List[Integer] data)
2 {
3 int[] array = data.toArray()
4 bubblesort(array) // Use the array implementation
5 data.clear()
6 data.addAll(Arrays.toList(array))
7 }
```



Abstract Data Types

Abstract Data Type defines...

- Domain: What kind of data is stored? (e.g., elements, key/value pairs)
- Constraints: How are items related? (e.g., ordered keys)
- Operations: How can the data be accessed/modified (e.g., 'i'th item)

Like a Java interface¹

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

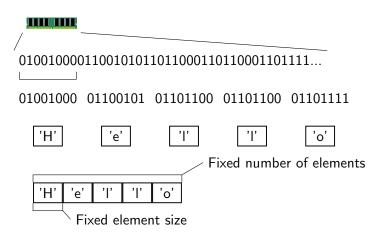
¹The term interface is not quite the same as ADT; The interface only formalizes the permitted operations.

The Sequence ADT

```
public interface Sequence<E>
{
    public E get(int idx);
    public void set(int idx, E value);
    public int size();
    public Iterator<E> iterator();
    }
```

E is the type of thing in the Sequence.

CSE 220 Crossover

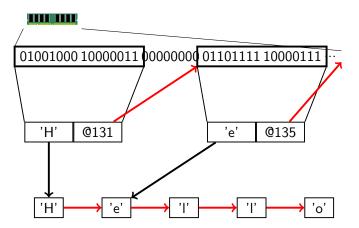


OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

Array

- public E get(int idx)
 - Return bytes bPE \times *idx* to bPE \times (*idx* + 1) 1
 - $\theta(1)$ (if we treat bPE as a constant)
- public void set(int idx, E value)
 - Update bytes bPE imes idx to bPE imes (idx + 1) 1
 - $\theta(1)$ (if we treat bPE as a constant)
- public int size()
 - Return size
 - θ(1)

CSE 220 Crossover 2: List Harder



OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

LinkedList

- public E get(int idx)
 - Start at head, and move to the next element idx times. Return the element's value.
 - $\bullet \ \theta(idx), \ O(N)$
- public void set(int idx, E value)
 - Start at head, and move to the next element idx times. Update the element's value.
 - $\bullet \ \theta(idx), \ O(N)$
- public int size()
 - Start at head, and move to the next element until you reach the end. Return the number of steps taken.

 $\bullet \theta(N)$

Linked Lists' size

Can we do better?

Store size

```
1 public class LinkedList<T> implements List<T>
2 {
3 LinkedListNode<T> head = null;
4 int size = 0;
5 /* ... */
6 }
```

- How expensive is public int size() now? $(\theta(1))$
- How expensive is it to maintain size? (Extra θ(1) work on insert/remove).

Storing redundant information can reduce complexity.

Enumeration

```
public int sumUpList(LinkedList<Integer> list)
1
       ł
2
         int total = 0:
3
         int N = list.size()
4
         Optional<LinkedListNode<Integer>> node = list.head;
5
         while(node.isPresent())
6
         Ł
7
           int value = node.get().value;
8
           total += value;
9
           node = node.get().next;
10
         }
11
         return total;
12
       }
13
```

Enumeration

This code is specialized for LinkedLists

- We can't re-use it for an ArrayList.
- If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

We need a way to represent a reference to the idx'th element of a list.

ListIterator

```
public interface ListIterator<E>
1
       ł
2
         public boolean hasNext();
3
         public E next();
4
         public boolean hasPrevious();
5
         public E previous();
6
         public void add(E value);
7
         public void set(E value);
8
         public void remove();
9
       }
10
```

Linked Lists

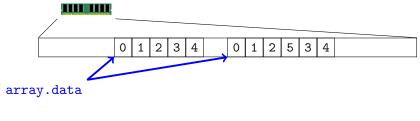
Access list element by index: O(N)

Access list element by reference (iterator): O(1)

The List ADT

```
public interface List<E>
1
       extends Sequence<E> // Everything a sequence has, and...
2
     ł
3
       /** Extend the sequence with a new element at the end */
4
       public void add(E value);
5
6
       /** Extend the sequence by inserting a new element */
7
       public void add(int idx, E value);
8
9
       /** Remove the element at a given index */
10
       public void remove(int idx);
11
     }
12
```

Array add(idx, value)



array.add(idx= 2, value= 5) $\leftarrow \theta(N)$

Sequences, Lists

ldea 1

Idea: Allocate more memory than we need.

Sequences, Lists

ArrayList

.

Start with a capacity of 2.

1 $\theta(1)$	(size now 1)				
	(, , , , , , , , , , , , , , , , , , ,				
$2 \ \theta(1)$	(size now 2)				
$3 2 \cdot \theta(1)$	(capacity now 4; size now 3)				
4 $\theta(1)$	(size now 4)				
5 $4 \cdot \theta(1)$	(capacity now 8; size now 5)				
$\theta(1)$	(size now 6)				
$\overline{7} \ \theta(1)$	(size now 7)				
8 θ(1)	(size now 8)				
9 $8 \cdot \theta(1)$	(capacity now 16; size now 9)				
8 more operations before next $\theta(N)$					
16 more operations before next $ heta(N)$					

. . . .

Sequences, Lists

ArrayList

- 2 insertions at $\theta(1)$
- $2 \cdot \theta(1)$ plus 2 insertions at $\theta(1)$ (up to capacity of 4)
- 4 $\cdot \theta(1)$ plus 4 insertions at $\theta(1)$ (up to capacity of 8)
- $8 \cdot \theta(1)$ plus 8 insertions at $\theta(1)$ (up to capacity of 16)
- $16 \cdot \theta(1)$ plus 16 insertions at $\theta(1)$ (up to capacity of 32)
- $32 \cdot \theta(1)$ plus 32 insertions at $\theta(1)$ (up to capacity of 64)

What's the pattern? $(2^i \cdot \theta(1) \text{ copy on the } 2^i$ 'th insertion)

For *N* insertions, how many copies do we perform? $(\log_2(N))$

Huh?

Despicable Me; ©2010 Universal Pictures

Amortized Runtimes

$${\mathcal T}_{{\it add}}({\it N}) = egin{cases} heta(1) & ext{if } {\it capacity} > {\it size} \ heta({\it N}) & ext{otherwise} \end{cases}$$

 $T_{add}(N) \in O(N)$

- Any one call could be O(N)
- But the O(N) case happens rarely.
 - ... rarely enough (with doubling) that the expensive call amortizes over the cheap calls.

LinkedList vs ArrayList

```
1 for(i = 0; i < N; i++)
2 {
3 list.add(i);
4 }</pre>
```

	LinkedList	ArrayList
add(i) once	O(1)	O(N)
add(i) <i>N</i> times	<i>O</i> (<i>N</i>)	O(N)

ArrayList.add(i) behaves like it's O(1), but only when it's in a loop.

Amortized Runtime

- The tight <u>unqualified</u> upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

Amortized Runtime

If T(N) runs in <u>amortized</u> O(f(N)), then:

$$\sum_{i=0}^{N} T(N) = N \cdot O(f(N)) = O(N \cdot f(N))$$

Even if $T(N) \notin O(f(N))$

Amortized Runtime

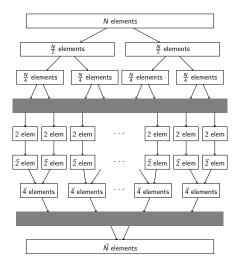
- Unqualified Bounds: Always true (no qualifiers)
- Amortized Bounds: Only valid in $\sum_{i=0}^{N} T(i)$
 - One call may be expensive, many calls average out cheap

List Runtimes

Ор	Array	ArrayList	Linked List (by idx)	Linked List (by iter)
get(i)	$\theta(1)$	$\theta(1)$	$\theta(i), \ O(N)$	$\theta(1)$
get(i) set(i,v) add(v)	$\theta(1)$	$\theta(1)$	$\theta(i), \ O(N)$	heta(1)
add(v)	θ(N)	Amm. $\theta(1)$	heta(1)	heta(1)
add(i,v)	θ(N)	$\theta(N)$	$\theta(i), \ O(N)$	heta(1)
remove(i)	θ(N)	$\theta(N)$	$\theta(i), \ O(N)$	heta(1)

└─ Merge Sort, Recursion

Merge Sort



└─ Merge Sort, Recursion

Sorting Algorithms

Algorithm	Runtime
BubbleSort	$O(N^2)$
MergeSort	Unqualified $O(N \log N)$
QuickSort	Expected $O(N \log N)$
HeapSort	Unqualified $O(N \log N)$

Bound Guarantees

- f(N) is a [Unqualified] Worst-Case Bound $(T(N) \in O(f(N)))$ The algorithm always runs in at most $c \cdot f(N)$ steps.
- f(N) is an Amortized Worst-Case Bound
 N invocations of the algorithm always run in at most N ⋅ c ⋅ f(N) steps.
- f(N) is an Expected Worst-Case Bound $(E[T(N)] \in O(f(N)))$ The algorithm is **statistically likely** to run in at most $c \cdot f(N)$ steps.

L_Stacks/Queues

Back to Sequence ADTs

Sequence

```
get(i), set(i, v)
```

List

... and add(v), add(i, v), remove(i),

Stack

push(v), pop(), peek()

Queue

add(v), remove(), peek()

The Stack ADT

A stack of objects on top of one another.

Push

Put a new object on top of the stack.

Pop

Remove the object from the top of the stack.

• Тор

Peek at what's on top of the stack.

The Queue ADT

Outside of the US, "queueing" is lining up.

- Enqueue (add(item) or offer(item))
 Put a new object at the end of the queue.
- Dequeue (remove() or poll()) Remove the object from the front of the queue.
- Peek (element() or peek()) Peek at what's at the front of the queue.

L_Stacks/Queues

Queues vs Stacks

Queue

First in, First out (FIFO)

Stack

Last in, First out (LIFO, FILO)

└─Stacks/Queues

Queues vs Stacks (Implementation)

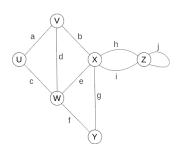
ADT	Stack		Queue	
using	Doub. L. List	Array	Doub. L. List	Array
add	O(1)	Amortized $O(1)$	O(1)	Amortized $O(1)$
remove	O(1)	O(1)	O(1)	O(1)

Graphs

A graph is a pair (V, E), where

- V is a set of vertices (sometimes nodes)
- E is a set of vertex pairs called **edges**
- Edges and vertices may also store data (labels)

Graph Terminology

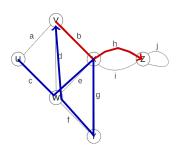


- Endpoints of an edge $\overline{U, V}$ are the endpoints of *a*.
- Edges <u>incident</u> on a vertex *a*, *b*, *d* are incident on *V*.
- Adjacent Vertices $\overline{U, V}$ are adjacent.
- Degree of a vertex (# of incident edges) \overline{X} has degree 5.
- Parallel Edges (same endpoints)
 h, i are parallel.
- Self-loop (same vertex is start and end) *j* is a self-loop.

Simple Graph

A graph with no parallel edges or self-loops.

Paths



Path

A sequence of alternating vertices and edges

- Begins with a vertex
- Ends with a vertex
- Each edge is preceded/followed by its endpoints

Simple Path

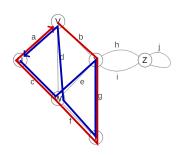
A path that never crosses the same vertex/edge twice

Examples

V, b, X, h, Z is a simple path.

U, c, W, e, X, g, Y, f, W, d, V is a path that is not simple.

Cycles



Cycle

A path that starts and ends on the same vertex.

Must contain at least one edge

Simple Cycle

A cycle where all of the edges and vertices are distinct (except the start/end vertex).

Examples

V, b, X, g, Y, f, W, c, U, a, V is a simple cycle.

U, c, W, e, X, g, Y, f, W, d, V, a, U is a cycle that is not simple.

Notation

- *N*: The number of vertices
- *M*: The number of edges
- deg(v): The degree of a vertex

Handshake Theorem

$$\sum_{v \in V} \deg(v) = 2M$$

Proof (sketch): Each edge adds 1 to the degree of 2 vertices.

Edge Limit

In a directed graph with no self-loops and no parallel edges:

$$M \leq N \cdot (N-1)$$

Proof (sketch):

- Each pair is connected at most once (no parallel edges)
- N possible start vertices
- (N-1) possible end vertices (no self-loops)
- $N \cdot (N-1)$ distinct combinations possible

The Directed Graph ADT

Interfaces

- Graph<V, E>
 - V: The vertex label type.
 - E: The edge <u>label</u> type.
- Vertex<V, E>
 - ... represents a single element (like a LinkedListNode)
 - ... stores a single value of type V
- Edge<V, E>
 - ... represents an edge (a pair of vertices)
 - ... stores a single value of type E

Graph Data Structures

What do we need to store for a graph ((V, E))?

- A collection of vertices
- A collection of edges

Edge List

```
1 class EdgeList<V, E> implements Graph<V, E>
2 {
3 List<Vertex> vertices = new ArrayList<Vertex>();
4 List<Edge> edges = new ArrayList<Edge>();
5 /*...*/
7 }
```

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(M)
- incidentEdges: O(M)
- hasEdgeTo: O(M)

Space Used: O(N + M)

(constant space per vertex, edge)

Improving on the Edge List

How can we avoid searching every edge in the edge list to find the incident edges?

Idea: Store each edges in/out edge list.

Adjacency List

```
1 public class Vertex<V, E>
2 {
3 Node<Vertex> node = null;
4 List<Edge> inEdges = new BetterLinkedList<Edge>();
5 List<Edge> outEdges = new BetterLinkedList<Edge>();
6 /*...*/
7 }
```

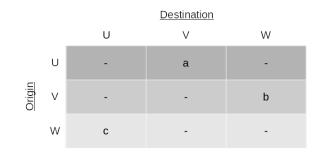
Adjacency List Summary

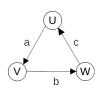
- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(deg(v))
- incidentEdges: O(1) + O(1) per next()
- hasEdgeTo: O(deg(v))

Space Used: O(N + M)

(constant space per vertex, edge)

The Adjacency Matrix Data Structure





Adjacency Matrix Summary

addEdge, removeEdge: O(1)

• addVertex, removeVertex: $O(N^2)$

incidentEdges: O(N)

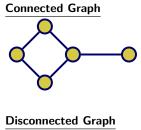
hasEdgeTo: O(1)

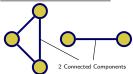
Space Used: $O(N^2)$

A few more definitions

A graph is **connected** if...

- ... there is a path between every pair of vertices.
- A **connected component** of G is a <u>maximal</u>, connected subgraph of G
 - <u>"maximal</u>" means that adding any other vertices from G would break the connected property.
 - Any subset of G's edges that makes the subgraph connected is fine.





Graph Search

Depth First Search (DFS)

Primary Goals

- Visit every vertex in graph G = (V, E).
- Construct a spanning tree for every connected component.
 - **Side Effect**: Compute connected components.
 - Side Effect: Compute a path between all connected vertices.
 - **Side Effect**: Determine if the graph is connected.
 - **Side Effect**: Identify any cycles (if they exist).

• Complete in time O(N + M).

Depth First Search (DFS)

DFS(G)

Input

• Graph G = (V, E)

Output

- Label every edge as a:
 - Spanning Edge: Part of the spanning tree
 - Back Edge: Part of a cycle

Depth First Search (DFS)

DFSOne(G, v)

Input

- Graph G = (V, E)
- Start vertex $v \in V$

Output

A spanning tree, rooted at v, to every node in v's connected component.

Depth First Search (DFS)

DFSOne

- **1** Initialize Todo **Stack** with start vertex v (no edge)
- 2 Retrieve next todo vertex (or return if none left).
- **3** If the vertex is already visited², return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

²It won't be for DFS or BFS, but bear with me...

C 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Breadth First Search (BFS)

BFSOne

- **1** Initialize Todo **Queue** with start vertex v (no edge)
- 2 Retrieve next todo vertex (or return if none left).
- 3 If the vertex is already visited³, return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

³It won't be for DFS or BFS, but bear with me...

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Dijkstra's Algorithm

Dijkstra One

- **1** Initialize Todo **Priority Queue** with start vertex *v* (no edge)
- 2 Retrieve next todo vertex (or return if none left).
- 3 If the vertex is already visited, return to step 2.
- 4 Otherwise, mark this vertex as visited.
- 5 Mark the edge listed in the todo item as a spanning edge.
- 6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
- 7 Return to step 2.

Graph Traversal

	DFS	BFS	Dijkstra's Algo
Runtime	O(N+M)	O(N+M)	$O(N + M \log(M))^4$
Visit Order	Last Visited	Closest by Edge Count	Closest by Total Edge Weight
Spanning Tree	Long paths	Fewest Vertices to Root	Shortest Edge Weight to Root

⁴With Heap as Priority Queue

New ADT: Priority Queue

PriorityQueue<E> (E must be Comparable)

- public void add(E e): Add e to the queue.
- public E peek(): Return the least element added.
- public E remove(): Remove and return the least element added.

(Partial) Ordering Properties

A partial ordering must be...

- **Reflexive** $x \le x$
- Antisymmetric if $x \le y$ and $y \le x$ then x = y
- **Transitive** if $x \le y$ and $y \le z$ then $x \le z$

(Total) Ordering Properties

- A total ordering must be...
 - **Reflexive** $x \le x$
 - Antisymmetric if $x \le y$ and $y \le x$ then x = y
 - **Transitive** if $x \le y$ and $y \le z$ then $x \le z$
 - **Complete** either $x \le y$ or $y \le x$ for any $x, y \in A$

Priority Queues

There are two mentalities...

- **Lazy**: Keep everything a mess.
- **Proactive**: Keep everything organized.
- **Balanced**: Keep everything a little sorted.

Lazy Priority Queue

Base Data Structure: Linked List

- public void add(T v) Append v to the end of the linked list.
- public T remove() O(N)
 Traverse the list to find the least value and remove it.

Proactive Priority Queue

Base Data Structure: Linked List

- public void add(T v) O(N)
 Traverse the list to insert v in sorted order.
- public T remove() O(1)
 Remove the head of the list.

Binary Min-Heaps

- \blacksquare Directed A directed edge in the tree means \leq
- Binary (max 2 children, easy to reason about)
- **Complete** (every 'level' except last is full)
 - For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

Operation	Lazy	Proactive	Heap
add	O(1)	O(N)	$O(\log(N))$
remove	O(N)	O(1)	$O(\log(N))$
peek	O(N)	O(1)	O(1)

Trees

Child

An adjacent node connected by an out-edge

Leaf

A node with no children

Depth of a node The number of edges from the root to the node

Depth of a tree

The maximum depth of any node in the tree

• Level of a node The depth + 1

Tree Traversals

- Pre-order (top-down)
 - visit root, visit left subtree, visit right subtree
- In-order
 - visit **left** subtree, visit **root**, visit **right** subtree
- Post-order (bottom-up)
 - visit left subtree, visit right subtree, visit root

Binary Search Trees

- Binary Tree
 - Each element has (at most) 2 children.

Binary Search Tree Constraint

- Each node has a value.
- Each node's value is greater than its left descendants
- Each node's value is lesser than (or equal to) its right descendants
- Set Constraint [optional]
 - Each node's value is unique.

Binary Search Trees

Operation	Runtime	
find	O(d)	
insert	O(d)	
remove	O(d)	

Balanced Search Trees

- General BST: d = O(N)
- **Balanced** BST: $d = O(\log(N))$
 - Complete Tree
 - AVL Tree Property
 - Red-Black Colorability

AVL Trees

An AVL Tree (<u>A</u>delson-<u>V</u>elsky and <u>L</u>andis) is a BST where every node is "depth balanced"

• $|\text{height}(left) - \text{height}(right)| \le 1$

balance(v) = height(left) - height(right)

Maintain **balance**
$$(v) \in \{-1, 0, 1\}$$

- **balance**(b) = 0 \rightarrow "v is balanced"
- **balance** $(b) = -1 \rightarrow$ "v is left-heavy"
- **balance** $(b) = 1 \rightarrow$ "v is right-heavy"

balance $(v) \in \{ -1, 0, 1 \}$ is the AVL tree property

AVL Trees

If balance(v) = height(left) - height(right)

Then $N > \min Nodes(d) = \Omega(1.5^d)$

So $d \in O(\log(N))$

AVL Trees

If the tree starts off balanced:

- The tree can be re-balanced after an insertion in log(N) time.
- The tree can be re-balanced after a removal in log(N) time.

Red-Black Trees

A BST is Red-Black Colorable if...

- Every node can be assigned a color, either **Red** or **Black**.
- The root is Black.
- The parent of every **Red** node is **Black**.
- The number of **Black** nodes on every path from a null-leaf to the root is the same (the **Black**-depth).

Red-Black Trees

If a BST is red-black colorable...

Then the distance from the root to the shallowest null-leaf is at least half the distance from the root to the deepest null-leaf.

Then The upper "half" of the tree is complete.

Then $N > \min Nodes(d) = \Omega(2^d)$ and $d \in O(\log(N))$

	General BST	AVL Tree	R-B Tree
find	O(N)	$O(\log(N))$	$O(\log(N))$
insert	O(N)	$O(\log(N))$	$O(\log(N))$
remove	O(N)	$O(\log(N))$	$O(\log(N))$

Note 1: R-B Trees are like AVL Trees, but with a better constant.

How do we implement a set?

- List (Array or Linked)?
- Sorted ArrayList?
- Balanced Binary Search Tree (AVL, Red-Black)
 O(log N)
- Hash Tables

Hash Functions

Example Hash Functions

- SHA256 (used by GIT)
- MD5, BCrypt (used by unix login, apt)
- MurmurHash3 (used by Scala)

hash(e) is pseudorandom

- 1 hash(e) \sim uniform random value in [0, Integer.MAX_VALUE)
- 2 hash(e) always returns the same value for the same e
- 3 hash(e) is uncorrelated with hash(e') for e \neq e'

Hash Functions

hash(e) is ...

- Pseudorandom ("Evenly distributed" over [0, B))
- Deterministic (Same value every time)

HashSet

- public boolean add(E a) Insert the element into the list at hash(a) mod B. Expected O(^N/_P)
- public boolean remove(E a)
 Find the element in the list at hash(a) mod B and remove it.
 Expected O (^N/_P)
- public boolean contains(E a) Find the element in the list at hash(a) mod B.

Expected $O\left(\frac{N}{B}\right)$

public int size()
Return a pre-computed size. O(1)

Expected Bucket Size

After N insertions, how many records can we <u>expect</u> in the average bucket?

Let X_j be the number of records in bucket j.

After N insertions
$$0 \le X_j \le N$$
:
• $X_j = 0$ with $P[X_j = 0] = ???$
• $X_j = 1$ with $P[X_j = 1] = ???$
• $X_j = 2$ with $P[X_j = 2] = ???$
• ...
• $X_j = N$ with $P[X_j = N] = ???$

Expected Bucket Size

For N insertions, we repeat the process: $X_{0,j}, X_{1,j}, X_{2,j}, \ldots X_{N,j}$

$$\mathbb{E}\left[\sum_{i} X_{i,j}\right] = \mathbb{E}[X_{0,j}] + \mathbb{E}[X_{1,j}] + \ldots + \mathbb{E}[X_{N,j}]$$
$$= \underbrace{\frac{1}{B} + \ldots + \frac{1}{B}}_{N \text{ times}}$$
$$= \frac{N}{B}$$

Expected Runtime of insert, find, remove: O (^N/_B)
 Unqualified Runtime of insert, find, remove: O(N)

Resizing the Hash Table

- Rehashes required: $\leq \log(N)$.
- The *i*th rehashing $O(2^i)$ work.
- <u>Total</u> work after N insertions is no more than...

$$\sum_{i=0}^{\log(N)} O(2^i) = O\left(\sum_{i=0}^{\log(N)} 2^i\right)$$
$$= O\left((2^{\log(N)+1} - 1)\right)$$
$$= O(N)$$

• Work per insertion (amortized): $O\left(\frac{N}{N}\right) = O(1)$ (plus the cost of actually inserting into the linked list)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Resizing the Hash Table (Rehashing)

Remember the load factor $\alpha = \frac{N}{B}$

The expected runtime of insert, find, remove is $O(\alpha)$

If we can ensure that $\alpha \leq \alpha_{max}$ for some constant α_{max} , then $O(\alpha) = O(1)$

After enough inserts to make $\alpha > \alpha_{max}$ (with *B* buckets):

- Create a new hash table with 2*B* buckets.
- Insert every element e from the original table into the new one according to hash(e) mod 2B

Recap: get(x)

Expected Cost

Find the bucket $O(c_{hash})^5$ Find the record in the bucket $O(\alpha \cdot c_{equals})^6$ Total: $O(c_{hash} + \alpha c_{equals}) = O(1+1) = O(1)$ Unqualified Worst-Case Cost
 Find the bucket $O(c_{hash})$ Find the record in the bucket $O(N \cdot c_{equals})$ Total: $O(c_{hash} + N \cdot c_{equals}) = O(1+N) = O(N)$

 ${}^{5}c_{hash}$ is the cost of the hash function. ${}^{6}c_{equals}$ is the cost of .equals.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Recap: add(x)

Expected Cost

- Find the bucket $O(c_{hash})$ $O(\alpha \cdot c_{equals})$
- Find the record in the bucket
- O(1)Replace the existing record or append it to the list

Total:
$$O(c_{hash} + lpha c_{equals} + 1) = O(1 + 1 + 1) = O(1)$$

Ungualified Worst-Case Cost

Find the bucket $O(c_{hash})$ $O(N \cdot c_{equals})$ Find the record in the bucket. Replace the existing record or append it to the list O(1)**Total**: $O(c_{hash} + N \cdot c_{equals} + 1) = O(1 + N + 1) = O(N)$

Recap: remove(x)

Expected Cost

- Find the bucket
- Find the record in the bucket
- Remove the record from the linked list

Total:
$$O(c_{hash} + \alpha c_{equals} + 1) = O(1 + 1 + 1) = O(1)$$

 $O(c_{hash})$ $O(\alpha \cdot c_{equals})$

 $O(c_{hash})$ $O(N \cdot c_{equals})$

O(1)

O(1)

Unqualified Worst-Case Cost

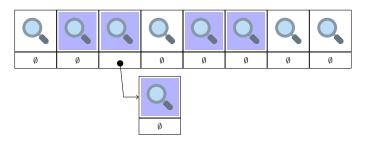
- Find the bucket
- Find the record in the bucket
- Remove the record from the linked list

Total: $O(c_{hash} + N \cdot c_{equals} + 1) = O(1 + N + 1) = O(N)$

Hash Table Operations

Operation	Unqualified	Amortized	Expected
add	O(N)	O(N)	O(1)
remove	O(N)	O(N)	O(1)
contains/get	O(N)	O(N)	O(1)

Iterating over a Hash Table



A B C	D	Е
-------	---	---

Iterating over a Hash Table

Visit every hash bucketVisit every element in every hash bucket

O(B)

O(N)

Total: O(B + N)

└─ Hash Tables

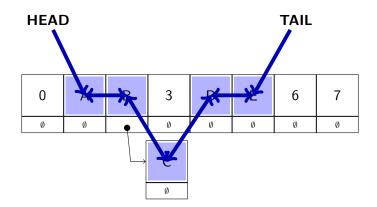
Linked Hash Table

Idea: Organize the hash table elements in a linked list

CSE 250: Midterm Review 3

Hash Tables

Linked Hash Table



Iterating over a Linked Hash Table

• Visit every element via linked list O(N)**Total:** O(N) (no more O(B) factor)

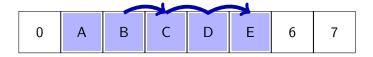
Insert (Changes only)

• Append the new element to the tail of the linked list. O(1)

Remove (Changes only)

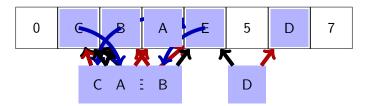
• Remove the element from its position in the linked list. O(1)

Hash Table with Open Addressing



- hash(A) = 1
- hash(B) = 2
- hash(C) = 2
- hash(D) = 4
- hash(E) = 3

Cuckoo Hashing



hash₁(A) = 1; hash₂(A) = 3 hash₁(B) = 2; hash₂(B) = 4 hash₁(C) = 2; hash₂(C) = 1 hash₁(D) = 4; hash₂(D) = 6 hash₁(E) = 1; hash₂(E) = 4

Cuckoo Hashing

Find

O(1)

- Look at array index hash₁ mod B
- Look at array index hash₂ mod B

Cuckoo Hashing

- **Find** is <u>unqualified</u> *O*(1)
- **Remove** is <u>unqualified</u> O(1)
- Insert is expected O(1) (for low values of α)

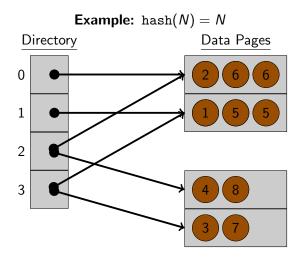
Dynamic Hashing

Observation: If $a = N \mod B$ then either

- $a = N \mod 2B$, or
- $\bullet \ a+B=N \mod 2B$

Doubling the size of the hash table always rehashes every element in a specific bucket to one of two places.

Dynamic Hashing



Dynamic Hashing

- An array (of size B) of pointers to arrays (each of size α).
 (and some book-keeping metadata)
- When doubling the array size, only copy the array pointers. (faster than rehashing the entire hash table)
- Only split one bucket at a time
- Only double the array when a bucket being split has only one pointer to it.

A Dynamic Hash Table does <u>not</u> have better asymptotic complexity than a Hash Table with Chaining (but has a better constant factor).