
CSE 250: Midterm Review 3

CSE 250: Midterm Review 3
Lectures 39, 40

Dec 8 and 11, 2023

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Class Logistics

Reminders

WA3 due Sun, Dec 10

PA3 showed you that even ‘anonymized’ data can be
problematic
WA3: Look for other cases of problems

Course Evals Bonus

Get to 90% completion across all 3 sections, we’ll release an
exam question.
Section C: 24/112 as of Friday (22%)

Do you like this class, especially the last 3 lectures?

Look at CSE 410 (soon to be CSE 350)

Do you like/hate this class?

Email Eric and me about being a TA!

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Class Logistics

Exam Day

Do bring...

Writing implement (pen or pencil)
One note sheet (up to 8 1

2 × 11 inches, double-sided)

Do not bring...
Bag (you will be asked to leave it at the front of the room)
Computer/Calculator/Watch/etc...

Wait outside before the exam starts so we can prepare.

You will be told when to enter.

There will be assigned seating.

Seating charts will be posted on the doors and projector.
See the seat numbers on the chairs.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Alg. 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Class Names

T (N) ∈ . . .

. . . θ(1): Constant

. . . θ(log(N)): Logarithmic

. . . θ(N): Linear

. . . θ(N log(N)): Log-Linear

. . . θ(N2): Quadratic

. . . θ(Nk) (for any k ≥ 1): Polynomial

. . . θ(2N): Exponential

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N)

g is bounded from below by something f -shaped
g(N) ∈ Ω(f (N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Classes

θ(1)
θ(log(N))

θ(N)

θ(N log(N))

θ(N2)θ(2N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Bounds

O(f (N)) includes:

All functions in θ(f (N))
All functions in ’smaller’ complexity classes

Ω(f (N)) includes:

All functions in θ(f (N))
All functions in ’bigger’ complexity classes

O(f (N)) ∩ Ω(f (N)) = θ(f (N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Bounds

θ(1)

θ(log(N))

θ(N)

θ(N log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Bounds

θ(N)O(N)Ω(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Rules of Thumb

θ
O

Ω
© Aleksandra Patrzalek, 2012

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Complexity Bounds

g(N) ∈ O(f (N)) (f is an upper bound for g) if and only if:

You can pick an N0

You can pick a c

For all N > N0: g(N) ≤ c · f (N)

g(N) ∈ Ω(f (N)) (f is a lower bound for g) if and only if:

You can pick an N0

You can pick a c

For all N > N0: g(N) ≥ c · f (N)

g(N) ∈ θ(f (N)) if and only if:

g(N) ∈ Ω(f (N))

g(N) ∈ O(f (N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Rules of Thumb

F (N) = f1(N) + f2(N) + . . .+ fk(N)

What complexity class is F (N) in?

f1(N) + f2(N) is in the greater of θ(f1(N)) and θ(f2(N)).

F (N) is in the greatest of any θ(fi (N))

We say the biggest fi is the dominant term.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Multi-Class Functions

T (N) =

{
θ(1) if N is even

θ(N) if N is odd

What is the complexity class of T (N)?

T (N) ∈ O(N) is a tight bound.

T (N) ∈ Ω(1) is a tight bound.

If the tight Big-O and Big-Ω bounds are different,
the function is not in ANY complexity class.

(Big-Theta doesn’t exist).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Does Big-Theta Exist?

N + 2N2 belongs to one complexity class. (θ(N2))

5N + 10N2 + 2N belongs to one complexity class (θ(2N)){
2N if rand() > 0.5

N otherwise
does not belong to one complexity class.

Usually θ(f1(N) + f2(N) + . . .) is based on the dominant term

If you see cases (i.e., ‘{’), it’s probably multi-class.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Multi-Class Functions

If...

g(N) ∈ O(f (N)) is a tight upper bound

g(N) ∈ Ω(f ′(N)) is a tight lower bound

f ′(N) ̸∈ θ(f (N))

... then there is no θ bound for g(N) (g is multi class)

Remember: Addition does not make a function multi-class.

(A tight Ω(f (N)) is the dominant (biggest) term being summed)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Complexity

Rules of Thumb

Lines of Code: Add Complexities

Loops: Multiply Complexity by the Loop Count

If/Then: Cases block ‘{’

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Bubblesort on Lists

1 public void bubblesort(List[Integer] data)

2 {

3 int N = data.size();

4 for(int i = N - 2; i >= 0; i--)

5 {

6 for(int j = i; j <= N - 1; j++)

7 {

8 if(data.get(j+1) < data.get(j))

9 {

10 int temp = data.get(j);

11 data.set(j, data.get(j+1));

12 data.set(j+1, temp);

13 }

14 }

15 }

16 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Bubblesort on Lists

1 public void bubblesort(List[Integer] data)

2 {

3 O(N3)
4 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Bubblesort on Lists

1 public void bubblesort(List[Integer] data)

2 {

3 int[] array = data.toArray()

4 bubblesort(array) // Use the array implementation

5 data.clear()

6 data.addAll(Arrays.toList(array))

7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Bubblesort on Lists

1 public void bubblesort(List[Integer] data)

2 {

3 O(N)
4 O(N2)
5 O(N)
6 O(N)
7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Abstract Data Types

Abstract Data Type defines...

Domain: What kind of data is stored? (e.g., elements,
key/value pairs)

Constraints: How are items related? (e.g., ordered keys)

Operations: How can the data be accessed/modified (e.g.,
‘i’th item)

Like a Java interface1

1The term interface is not quite the same as ADT; The interface only
formalizes the permitted operations.
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

The Sequence ADT

1 public interface Sequence<E>

2 {

3 public E get(int idx);

4 public void set(int idx, E value);

5 public int size();

6 public Iterator<E> iterator();

7 }

E is the type of thing in the Sequence.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

CSE 220 Crossover

0100100001100101011011000110110001101111...

01001000

’H’

01100101 01101100 01101100 01101111

’e’ ’l’ ’l’ ’o’

’H’ ’e’ ’l’ ’l’ ’o’

Fixed number of elements

Fixed element size

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://freesvg.org/random-access-computer-memory-ram-vector-image

CSE 250: Midterm Review 3

Sequences, Lists

Array

public E get(int idx)

Return bytes bPE× idx to bPE× (idx + 1)− 1
θ(1) (if we treat bPE as a constant)

public void set(int idx, E value)

Update bytes bPE× idx to bPE× (idx + 1)− 1
θ(1) (if we treat bPE as a constant)

public int size()

Return size

θ(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

CSE 220 Crossover 2: List Harder

01001000 10000011 00000000 01101111 10000111 ...

’H’ @131 ’e’ @135

’H’ ’e’ ’l’ ’l’ ’o’

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://freesvg.org/random-access-computer-memory-ram-vector-image

CSE 250: Midterm Review 3

Sequences, Lists

LinkedList

public E get(int idx)

Start at head, and move to the next element idx times.
Return the element’s value.
θ(idx), O(N)

public void set(int idx, E value)

Start at head, and move to the next element idx times.
Update the element’s value.
θ(idx), O(N)

public int size()

Start at head, and move to the next element until you reach
the end. Return the number of steps taken.
θ(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Linked Lists’ size

Can we do better?

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Store size

1 public class LinkedList<T> implements List<T>

2 {

3 LinkedListNode<T> head = null;

4 int size = 0;

5 /* ... */

6 }

How expensive is public int size() now?
(θ(1))

How expensive is it to maintain size?
(Extra θ(1) work on insert/remove).

Storing redundant information can reduce complexity.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Enumeration

1 public int sumUpList(LinkedList<Integer> list)

2 {

3 int total = 0;

4 int N = list.size()

5 Optional<LinkedListNode<Integer>> node = list.head;

6 while(node.isPresent())

7 {

8 int value = node.get().value;

9 total += value;

10 node = node.get().next;

11 }

12 return total;

13 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Enumeration

This code is specialized for LinkedLists

We can’t re-use it for an ArrayList.

If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

We need a way to represent a reference to the idx’th element
of a list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

ListIterator

1 public interface ListIterator<E>

2 {

3 public boolean hasNext();

4 public E next();

5 public boolean hasPrevious();

6 public E previous();

7 public void add(E value);

8 public void set(E value);

9 public void remove();

10 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Linked Lists

Access list element by index: O(N)

Access list element by reference (iterator): O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

The List ADT

1 public interface List<E>

2 extends Sequence<E> // Everything a sequence has, and...

3 {

4 /** Extend the sequence with a new element at the end */

5 public void add(E value);

6

7 /** Extend the sequence by inserting a new element */

8 public void add(int idx, E value);

9

10 /** Remove the element at a given index */

11 public void remove(int idx);

12 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Array add(idx, value)

0 1 2 3 4

array.data

array.add(idx= 2, value= 5)�θ(N)

0 1 2 5 3 4

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

Idea 1

Idea: Allocate more memory than we need.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

ArrayList

Start with a capacity of 2.

1 θ(1) (size now 1)

2 θ(1) (size now 2)

3 2 · θ(1) (capacity now 4; size now 3)

4 θ(1) (size now 4)

5 4 · θ(1) (capacity now 8; size now 5)

6 θ(1) (size now 6)

7 θ(1) (size now 7)

8 θ(1) (size now 8)

9 8 · θ(1) (capacity now 16; size now 9)

. . . 8 more operations before next θ(N)

. . . 16 more operations before next θ(N)
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Sequences, Lists

ArrayList

2 insertions at θ(1)

2 · θ(1) plus 2 insertions at θ(1) (up to capacity of 4)

4 · θ(1) plus 4 insertions at θ(1) (up to capacity of 8)

8 · θ(1) plus 8 insertions at θ(1) (up to capacity of 16)

16 · θ(1) plus 16 insertions at θ(1) (up to capacity of 32)

32 · θ(1) plus 32 insertions at θ(1) (up to capacity of 64)

. . .

What’s the pattern?
(2i · θ(1) copy on the 2i ’th insertion)

For N insertions, how many copies do we perform?
(log2(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

Huh?

Despicable Me;©2010 Universal Pictures

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

Amortized Runtimes

Tadd(N) =

{
θ(1) if capacity > size

θ(N) otherwise

Tadd(N) ∈ O(N)

Any one call could be O(N)

But the O(N) case happens rarely.

... rarely enough (with doubling) that the expensive call
amortizes over the cheap calls.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

LinkedList vs ArrayList

1 for(i = 0; i < N; i++)

2 {

3 list.add(i);

4 }

LinkedList ArrayList

add(i) once O(1) O(N)

add(i) N times O(N) O(N)

ArrayList.add(i) behaves like it’s O(1), but only when it’s in a loop.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

Amortized Runtime

The tight unqualified upper bound on add(i) is O(N)
Any one call to add(i) could take up to O(N).

The tight amortized upper bound on add(i) is O(1)
N calls to add(i) average out to O(1) each.
(O(N) for all N calls)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

Amortized Runtime

If T (N) runs in amortized O(f (N)), then:

N∑
i=0

T (N) = N · O(f (N)) = O(N · f (N))

Even if T (N) ̸∈ O(f (N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

Amortized Runtime

Unqualified Bounds: Always true (no qualifiers)

Amortized Bounds: Only valid in
∑N

i=0 T (i)

One call may be expensive, many calls average out cheap

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Amortized Runtime

List Runtimes

Op Array ArrayList Linked List (by idx) Linked List (by iter)

get(i) θ(1) θ(1) θ(i), O(N) θ(1)

set(i,v) θ(1) θ(1) θ(i), O(N) θ(1)

add(v) θ(N) Amm. θ(1) θ(1) θ(1)

add(i,v) θ(N) θ(N) θ(i), O(N) θ(1)

remove(i) θ(N) θ(N) θ(i), O(N) θ(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Merge Sort, Recursion

Merge Sort

N elements

N
2 elements N

2 elements

N
4 elements N

4 elements N
4 elements N

4 elements

2 elem 2 elem 2 elem 2 elem2 elem2 elem. . .

2⃗ elem 2⃗ elem 2⃗ elem 2⃗ elem 2⃗ elem 2⃗ elem. . .

4⃗ elements 4⃗ elements 4⃗ elements 4⃗ elements
. . .

N⃗ elements

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Merge Sort, Recursion

Sorting Algorithms

Algorithm Runtime
BubbleSort O(N2)
MergeSort Unqualified O(N logN)
QuickSort Expected O(N logN)
HeapSort Unqualified O(N logN)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Merge Sort, Recursion

Bound Guarantees

f (N) is a [Unqualified] Worst-Case Bound (T (N) ∈ O(f (N)))

The algorithm always runs in at most c · f (N) steps.

f (N) is an Amortized Worst-Case Bound
N invocations of the algorithm always run in at most N · c · f (N) steps.

f (N) is an Expected Worst-Case Bound (E [T (N)] ∈ O(f (N)))

The algorithm is statistically likely to run in at most c · f (N) steps.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Stacks/Queues

Back to Sequence ADTs

Sequence
get(i), set(i, v)

List
... and add(v), add(i, v), remove(i),

Stack
push(v), pop(), peek()

Queue
add(v), remove(), peek()

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Stacks/Queues

The Stack ADT

A stack of objects on top of one another.

Push
Put a new object on top of the stack.

Pop
Remove the object from the top of the stack.

Top
Peek at what’s on top of the stack.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Stacks/Queues

The Queue ADT

Outside of the US, ”queueing” is lining up.

Enqueue (add(item) or offer(item))
Put a new object at the end of the queue.

Dequeue (remove() or poll())
Remove the object from the front of the queue.

Peek (element() or peek())
Peek at what’s at the front of the queue.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Stacks/Queues

Queues vs Stacks

Queue
First in, First out (FIFO)

Stack
Last in, First out (LIFO, FILO)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Stacks/Queues

Queues vs Stacks (Implementation)

ADT Stack Queue
using... Doub. L. List Array Doub. L. List Array

add O(1) Amortized O(1) O(1) Amortized O(1)
remove O(1) O(1) O(1) O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Graphs

A graph is a pair (V, E), where

V is a set of vertices (sometimes nodes)

E is a set of vertex pairs called edges

Edges and vertices may also store data (labels)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Graph Terminology

Endpoints of an edge
U,V are the endpoints of a.

Edges incident on a vertex
a, b, d are incident on V .

Adjacent Vertices
U,V are adjacent.

Degree of a vertex (# of incident edges)
X has degree 5.

Parallel Edges (same endpoints)
h, i are parallel.

Self-loop (same vertex is start and end)
j is a self-loop.

Simple Graph
A graph with no parallel edges or self-loops.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Paths

Path

A sequence of alternating vertices and edges

Begins with a vertex
Ends with a vertex
Each edge is preceded/followed by its
endpoints

Simple Path
A path that never crosses the same
vertex/edge twice

Examples
V , b,X , h,Z is a simple path.
U, c,W , e,X , g ,Y , f ,W , d ,V is a path that
is not simple.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Cycles

Cycle

A path that starts and ends on the same

vertex.

Must contain at least one edge

Simple Cycle
A cycle where all of the edges and vertices are
distinct (except the start/end vertex).

Examples
V , b,X , g ,Y , f ,W , c,U, a,V is a simple
cycle.
U, c,W , e,X , g ,Y , f ,W , d ,V , a,U is a cycle
that is not simple.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Notation

N: The number of vertices

M: The number of edges

deg(v): The degree of a vertex

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Handshake Theorem

∑
v∈V

deg(v) = 2M

Proof (sketch): Each edge adds 1 to the degree of 2 vertices.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Edge Limit

In a directed graph with no self-loops and no parallel edges:

M ≤ N · (N − 1)

Proof (sketch):

Each pair is connected at most once (no parallel edges)

N possible start vertices

(N − 1) possible end vertices (no self-loops)

N · (N − 1) distinct combinations possible

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

The Directed Graph ADT

Interfaces

Graph<V, E>

V: The vertex label type.
E: The edge label type.

Vertex<V, E>

... represents a single element (like a LinkedListNode)

... stores a single value of type V

Edge<V, E>

... represents an edge (a pair of vertices)

... stores a single value of type E

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Graph Data Structures

What do we need to store for a graph ((V ,E))?

A collection of vertices

A collection of edges

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Edge List

1 class EdgeList<V, E> implements Graph<V, E>

2 {

3 List<Vertex> vertices = new ArrayList<Vertex>();

4 List<Edge> edges = new ArrayList<Edge>();

5

6 /*...*/

7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Edge List Summary

addEdge, addVertex: O(1)

removeEdge: O(1)

removeVertex: O(M)

incidentEdges: O(M)

hasEdgeTo: O(M)

Space Used: O(N +M)
(constant space per vertex, edge)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Improving on the Edge List

How can we avoid searching every edge in the edge list to find the
incident edges?

Idea: Store each edges in/out edge list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Adjacency List

1 public class Vertex<V, E>

2 {

3 Node<Vertex> node = null;

4 List<Edge> inEdges = new BetterLinkedList<Edge>();

5 List<Edge> outEdges = new BetterLinkedList<Edge>();

6 /*...*/

7 }

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Adjacency List Summary

addEdge, addVertex: O(1)

removeEdge: O(1)

removeVertex: O(deg(v))

incidentEdges: O(1) + O(1) per next()

hasEdgeTo: O(deg(v))

Space Used: O(N +M)
(constant space per vertex, edge)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

The Adjacency Matrix Data Structure

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

Adjacency Matrix Summary

addEdge, removeEdge: O(1)

addVertex, removeVertex: O(N2)

incidentEdges: O(N)

hasEdgeTo: O(1)

Space Used: O(N2)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graphs

A few more definitions

A graph is connected if. . .

. . . there is a path between every pair of
vertices.

A connected component of G is a maximal,
connected subgraph of G

“maximal” means that adding any other vertices
from G would break the connected property.

Any subset of G ’s edges that makes the subgraph
connected is fine.

Connected Graph

Disconnected Graph

2 Connected Components

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Depth First Search (DFS)

Primary Goals

Visit every vertex in graph G = (V ,E).

Construct a spanning tree for every connected component.

Side Effect: Compute connected components.
Side Effect: Compute a path between all connected vertices.
Side Effect: Determine if the graph is connected.
Side Effect: Identify any cycles (if they exist).

Complete in time O(N +M).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Depth First Search (DFS)

DFS(G)

Input

Graph G = (V ,E)

Output

Label every edge as a:

Spanning Edge: Part of the spanning tree
Back Edge: Part of a cycle

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Depth First Search (DFS)

DFSOne(G, v)

Input

Graph G = (V ,E)

Start vertex v ∈ V

Output

A spanning tree, rooted at v , to every node in v ’s connected
component.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Depth First Search (DFS)

DFSOne

1 Initialize Todo Stack with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited2, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

2It won’t be for DFS or BFS, but bear with me...
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Breadth First Search (BFS)

BFSOne

1 Initialize Todo Queue with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited3, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

3It won’t be for DFS or BFS, but bear with me...
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Dijkstra’s Algorithm

Dijkstra One

1 Initialize Todo Priority Queue with start vertex v (no edge)

2 Retrieve next todo vertex (or return if none left).

3 If the vertex is already visited, return to step 2.

4 Otherwise, mark this vertex as visited.

5 Mark the edge listed in the todo item as a spanning edge.

6 Add todo items for every unvisited, adjacent vertex
(via the edge to the current vertex).

7 Return to step 2.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Graph Traversal

DFS BFS Dijkstra’s Algo

Runtime O(N +M) O(N +M) O(N +M log(M))4

Visit Order Last Visited Closest by Edge
Count

Closest by Total Edge
Weight

Spanning Tree Long paths Fewest Vertices
to Root

Shortest Edge Weight to
Root

4With Heap as Priority Queue
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

New ADT: Priority Queue

PriorityQueue<E> (E must be Comparable)

public void add(E e): Add e to the queue.

public E peek(): Return the least element added.

public E remove(): Remove and return the least element
added.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

(Partial) Ordering Properties

A partial ordering must be. . .

Reflexive x ≤ x

Antisymmetric if x ≤ y and y ≤ x then x = y

Transitive if x ≤ y and y ≤ z then x ≤ z

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

(Total) Ordering Properties

A total ordering must be. . .

Reflexive x ≤ x

Antisymmetric if x ≤ y and y ≤ x then x = y

Transitive if x ≤ y and y ≤ z then x ≤ z

Complete either x ≤ y or y ≤ x for any x , y ∈ A

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Priority Queues

There are two mentalities...

Lazy: Keep everything a mess.

Proactive: Keep everything organized.

Balanced: Keep everything a little sorted.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Lazy Priority Queue

Base Data Structure: Linked List

public void add(T v) O(1)
Append v to the end of the linked list.

public T remove() O(N)
Traverse the list to find the least value and remove it.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Proactive Priority Queue

Base Data Structure: Linked List

public void add(T v) O(N)
Traverse the list to insert v in sorted order.

public T remove() O(1)
Remove the head of the list.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Binary Min-Heaps

Directed A directed edge in the tree means ≤
Binary (max 2 children, easy to reason about)

Complete (every ’level’ except last is full)

For consistency, keep all nodes in the last level to the left.

This is a Min-Heap

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Graph Search

Priority Queues

Operation Lazy Proactive Heap
add O(1) O(N) O(log(N))

remove O(N) O(1) O(log(N))
peek O(N) O(1) O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Trees

Child
An adjacent node connected by an out-edge

Leaf
A node with no children

Depth of a node
The number of edges from the root to the node

Depth of a tree
The maximum depth of any node in the tree

Level of a node
The depth + 1

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Tree Traversals

Pre-order (top-down)

visit root, visit left subtree, visit right subtree

In-order

visit left subtree, visit root, visit right subtree

Post-order (bottom-up)

visit left subtree, visit right subtree, visit root

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Binary Search Trees

Binary Tree

Each element has (at most) 2 children.

Binary Search Tree Constraint

Each node has a value.
Each node’s value is greater than its left descendants
Each node’s value is lesser than (or equal to) its right
descendants

Set Constraint [optional]
Each node’s value is unique.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Binary Search Trees

Operation Runtime
find O(d)
insert O(d)
remove O(d)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Balanced Search Trees

General BST: d = O(N)

Balanced BST: d = O(log(N))

Complete Tree
AVL Tree Property
Red-Black Colorability

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

AVL Trees

An AVL Tree (Adelson-Velsky and Landis) is a BST where
every node is “depth balanced”

|height(left)− height(right)| ≤ 1

balance(v) = height(left)− height(right)

Maintain balance(v) ∈ { −1, 0, 1 }
balance(b) = 0 → “v is balanced”
balance(b) = −1 → “v is left-heavy”
balance(b) = 1 → “v is right-heavy”

balance(v) ∈ { −1, 0, 1 } is the AVL tree property

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

AVL Trees

If balance(v) = height(left)− height(right)

Then N > minNodes(d) = Ω(1.5d)

So d ∈ O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

AVL Trees

If the tree starts off balanced:

The tree can be re-balanced after an insertion in log(N) time.

The tree can be re-balanced after a removal in log(N) time.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Red-Black Trees

A BST is Red-Black Colorable if...

Every node can be assigned a color, either Red or Black.

The root is Black.

The parent of every Red node is Black.

The number of Black nodes on every path from a null-leaf to
the root is the same (the Black-depth).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

Red-Black Trees

If a BST is red-black colorable...

Then the distance from the root to the shallowest null-leaf is at
least half the distance from the root to the deepest null-leaf.

Then The upper “half” of the tree is complete.

Then N > minNodes(d) = Ω(2d) and d ∈ O(log(N))

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Binary Search Trees

BST Overview

General BST AVL Tree R-B Tree
find O(N) O(log(N)) O(log(N))
insert O(N) O(log(N)) O(log(N))
remove O(N) O(log(N)) O(log(N))

Note 1: R-B Trees are like AVL Trees, but with a better constant.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

How do we implement a set?

List (Array or Linked)?

Sorted ArrayList?

Balanced Binary Search Tree (AVL, Red-Black) O(logN)

Hash Tables

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Hash Functions

Example Hash Functions

SHA256 (used by GIT)

MD5, BCrypt (used by unix login, apt)

MurmurHash3 (used by Scala)

hash(e) is pseudorandom

1 hash(e) ∼ uniform random value in [0, Integer.MAX VALUE)

2 hash(e) always returns the same value for the same e

3 hash(e) is uncorrelated with hash(e’) for e ̸= e’

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Hash Functions

hash(e) is ...

Pseudorandom (“Evenly distributed” over [0,B))

Deterministic (Same value every time)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

HashSet

public boolean add(E a)

Insert the element into the list at hash(a) mod B.
Expected O

(
N
B

)
public boolean remove(E a)

Find the element in the list at hash(a) mod B and remove it.
Expected O

(
N
B

)
public boolean contains(E a)

Find the element in the list at hash(a) mod B.
Expected O

(
N
B

)
public int size()

Return a pre-computed size. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Expected Bucket Size

After N insertions, how many records can we expect in the average
bucket?

Let Xj be the number of records in bucket j .

After N insertions 0 ≤ Xj ≤ N:

Xj = 0 with P[Xj = 0] = ???

Xj = 1 with P[Xj = 1] = ???

Xj = 2 with P[Xj = 2] = ???

. . .

Xj = N with P[Xj = N] = ???

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Expected Bucket Size

For N insertions, we repeat the process: X0,j ,X1,j ,X2,j , . . .XN,j

E[
∑
i

Xi ,j] = E[X0,j] + E[X1,j] + . . .+ E[XN,j]

=
1

B
+ . . .+

1

B︸ ︷︷ ︸
N times

=
N

B

Expected Runtime of insert, find, remove: O
(
N
B

)
Unqualified Runtime of insert, find, remove: O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Resizing the Hash Table

Rehashes required: ≤ log(N).

The ith rehashing O(2i) work.

Total work after N insertions is no more than...

log(N)∑
i=0

O(2i) = O

log(N)∑
i=0

2i

= O

(
(2log(N)+1 − 1)

)
= O (N)

Work per insertion (amortized): O
(
N
N

)
= O(1)

(plus the cost of actually inserting into the linked list)
© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Resizing the Hash Table (Rehashing)

Remember the load factor α = N
B

The expected runtime of insert, find, remove is O(α)

If we can ensure that α ≤ αmax for some constant αmax , then
O(α) = O(1)

After enough inserts to make α > αmax (with B buckets):

Create a new hash table with 2B buckets.

Insert every element e from the original table into the new
one according to hash(e) mod 2B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Recap: get(x)

Expected Cost

Find the bucket O(chash)
5

Find the record in the bucket O(α · cequals)6

Total: O(chash + αcequals) = O(1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Total: O(chash + N · cequals) = O(1 + N) = O(N)

5chash is the cost of the hash function.
6cequals is the cost of .equals.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Recap: add(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Replace the existing record or append it to the list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Recap: remove(x)

Expected Cost

Find the bucket O(chash)

Find the record in the bucket O(α · cequals)
Remove the record from the linked list O(1)

Total: O(chash + αcequals + 1) = O(1 + 1 + 1) = O(1)

Unqualified Worst-Case Cost

Find the bucket O(chash)

Find the record in the bucket O(N · cequals)
Remove the record from the linked list O(1)

Total: O(chash + N · cequals + 1) = O(1 + N + 1) = O(N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Hash Table Operations

Operation Unqualified Amortized Expected
add O(N) O(N) O(1)

remove O(N) O(N) O(1)
contains/get O(N) O(N) O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Iterating over a Hash Table

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

D E

A B C D E

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Iterating over a Hash Table

Visit every hash bucket O(B)

Visit every element in every hash bucket O(N)

Total: O(B + N)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Linked Hash Table

Idea: Organize the hash table elements in a linked list

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Linked Hash Table

0 1 2 3 4 5 6 7

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2

∅

A B

C

D E

HEAD TAIL

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Iterating over a Linked Hash Table

Visit every element via linked list O(N)

Total: O(N) (no more O(B) factor)

Insert (Changes only)

Append the new element to the tail of the linked list. O(1)

Remove (Changes only)

Remove the element from its position in the linked list. O(1)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Hash Table with Open Addressing

0 1 2 3 4 5 6 7A B C D E

hash(A) = 1

hash(B) = 2

hash(C) = 2

hash(D) = 4

hash(E) = 3

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Cuckoo Hashing

0 1 2 3 4 5 6 7A B

C

C B

D

D

E

E

B

B

C

C

A

A

hash1(A) = 1; hash2(A) = 3

hash1(B) = 2; hash2(B) = 4

hash1(C) = 2; hash2(C) = 1

hash1(D) = 4; hash2(D) = 6

hash1(E) = 1; hash2(E) = 4

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Cuckoo Hashing

Find O(1)

Look at array index hash1 mod B

Look at array index hash2 mod B

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Cuckoo Hashing

Find is unqualified O(1)

Remove is unqualified O(1)

Insert is expected O(1) (for low values of α)

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Dynamic Hashing

Observation: If a = N mod B then either

a = N mod 2B, or

a+ B = N mod 2B

Doubling the size of the hash table always rehashes every element in a
specific bucket to one of two places.

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Dynamic Hashing

Example: hash(N) = N

Directory

0

1

Data Pages

2 4

1 3 5

2

3

1

3

5

7

62

4

6

8

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 3

Hash Tables

Dynamic Hashing

An array (of size B) of pointers to arrays (each of size α).
(and some book-keeping metadata)

When doubling the array size, only copy the array pointers.
(faster than rehashing the entire hash table)

Only split one bucket at a time

Only double the array when a bucket being split has only one
pointer to it.

A Dynamic Hash Table does not have better asymptotic complexity
than a Hash Table with Chaining (but has a better constant factor).

© 2023 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

