CSE 250: Midterm Review 3
 Lectures 39, 40

Dec 8 and 11, 2023

Reminders

- WA3 due Sun, Dec 10
- PA3 showed you that even 'anonymized' data can be problematic
■ WA3: Look for other cases of problems
- Course Evals Bonus
- Get to 90% completion across all 3 sections, we'll release an exam question.
- Section C: $24 / 112$ as of Friday (22\%)

■ Do you like this class, especially the last 3 lectures?

- Look at CSE 410 (soon to be CSE 350)

■ Do you like/hate this class?

- Email Eric and me about being a TA!

Exam Day

■ Do bring...

- Writing implement (pen or pencil)
- One note sheet (up to $8 \frac{1}{2} \times 11$ inches, double-sided)

■ Do not bring...

- Bag (you will be asked to leave it at the front of the room)
- Computer/Calculator/Watch/etc...
- Wait outside before the exam starts so we can prepare.
- You will be told when to enter.
- There will be assigned seating.
- Seating charts will be posted on the doors and projector.
- See the seat numbers on the chairs.

Runtime

Some Notation

- N : The input "size"

■ How many students I have to email.
■ How many streets on a map.
■ How many key/value pairs in my dictionary
■ $T(N)$: The runtime of 'some' implementation of the algorithm.

- Some... correct implementation.

We care about the "shape" of $T(N)$ when you plot it.

Class Names

$T(N) \in \ldots$
■ ... $\theta(1):$ Constant
■ $\ldots \theta(\log (N))$: Logarithmic

- . . $\theta(N)$: Linear

■ . . $\theta(N \log (N))$: Log-Linear

- ... $\theta\left(N^{2}\right):$ Quadratic

■ $\ldots \theta\left(N^{k}\right)$ (for any $k \geq 1$): Polynomial
■ $\ldots \theta\left(2^{N}\right)$: Exponential

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N)$
■ g is bounded from below by something f-shaped $g(N) \in \Omega(f(N)$

L Complexity

Complexity Classes

Complexity Bounds

- $O(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
- All functions in $\theta(f(N))$
- All functions in 'bigger' complexity classes
$O(f(N)) \cap \Omega(f(N))=\theta(f(N))$

Complexity Bounds

$\theta(N \log (N))$

Complexity Bounds

Rules of Thumb

(C) Aleksandra Patrzalek, 2012

Complexity Bounds

$g(N) \in O(f(N))$ (f is an upper bound for g) if and only if:

- You can pick an N_{0}
- You can pick a c
- For all $N>N_{0}: g(N) \leq c \cdot f(N)$
$g(N) \in \Omega(f(N))(f$ is a lower bound for $g)$ if and only if:
- You can pick an N_{0}
- You can pick a c
- For all $N>N_{0}: g(N) \geq c \cdot f(N)$
$g(N) \in \theta(f(N))$ if and only if:
- $g(N) \in \Omega(f(N))$
- $g(N) \in O(f(N))$

Rules of Thumb

$$
F(N)=f_{1}(N)+f_{2}(N)+\ldots+f_{k}(N)
$$

What complexity class is $F(N)$ in?
$f_{1}(N)+f_{2}(N)$ is in the greater of $\theta\left(f_{1}(N)\right)$ and $\theta\left(f_{2}(N)\right)$.
$F(N)$ is in the greatest of any $\theta\left(f_{i}(N)\right)$
We say the biggest f_{i} is the dominant term.

Multi-Class Functions

$$
T(N)= \begin{cases}\theta(1) & \text { if } N \text { is even } \\ \theta(N) & \text { if } N \text { is odd }\end{cases}
$$

What is the complexity class of $T(N)$?

- $T(N) \in O(N)$ is a tight bound.
- $T(N) \in \Omega(1)$ is a tight bound.

If the tight Big-O and Big- Ω bounds are different, the function is not in ANY complexity class.
(Big-Theta doesn't exist).

Does Big-Theta Exist?

$N+2 N^{2}$ belongs to one complexity class. $\left(\theta\left(N^{2}\right)\right)$
$5 N+10 N^{2}+2^{N}$ belongs to one complexity class $\left(\theta\left(2^{N}\right)\right)$
$\left\{\begin{array}{ll}2^{N} & \text { if rand () }>0.5 \\ N & \text { otherwise }\end{array}\right.$ does not belong to one complexity class.

- Usually $\theta\left(f_{1}(N)+f_{2}(N)+\ldots\right)$ is based on the dominant term
- If you see cases (i.e., '\{'), it's probably multi-class.

Multi-Class Functions

If...

- $g(N) \in O(f(N))$ is a tight upper bound
- $g(N) \in \Omega\left(f^{\prime}(N)\right)$ is a tight lower bound
- $f^{\prime}(N) \notin \theta(f(N))$
... then there is no θ bound for $g(N)$ (g is multi class)
Remember: Addition does not make a function multi-class.
(A tight $\Omega(f(N))$ is the dominant (biggest) term being summed)

Rules of Thumb

■ Lines of Code: Add Complexities
■ Loops: Multiply Complexity by the Loop Count
■ If/Then: Cases block '\{'

Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
    int N = data.size();
    for(int i = N - 2; i >= 0; i--)
    {
        for(int j = i; j <= N - 1; j++)
        {
            if(data.get(j+1) < data.get(j))
            {
                int temp = data.get(j);
                data.set(j, data.get(j+1));
                data.set(j+1, temp);
            }
        }
    }
}
```


Bubblesort on Lists

Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
    int[] array = data.toArray()
    bubblesort(array) // Use the array implementation
    data.clear()
    data.addAll(Arrays.toList(array))
}
```


Bubblesort on Lists

```
public void bubblesort(List[Integer] data)
{
        O(N)
        O(N2
        O(N)
        O(N)
    }
```


Abstract Data Types

Abstract Data Type defines...

- Domain: What kind of data is stored? (e.g., elements, key/value pairs)
- Constraints: How are items related? (e.g., ordered keys)

■ Operations: How can the data be accessed/modified (e.g., 'i'th item)

Like a Java interface ${ }^{1}$
${ }^{1}$ The term interface is not quite the same as ADT; The interface only formalizes the permitted operations.

The Sequence ADT

```
public interface Sequence<E>
{
            public E get(int idx);
            public void set(int idx, E value);
            public int size();
            public Iterator<E> iterator();
}
```

E is the type of thing in the Sequence.

CSE 220 Crossover

0100100001100101011011000110110001101111...

\qquad -1

0100100001100101011011000110110001101111

	H '	'e'	' l '
	I '	'o'	

Array

- public E get(int idx)
- Return bytes bPE $\times i d x$ to $\mathrm{bPE} \times(i d x+1)-1$
- $\theta(1)$ (if we treat bPE as a constant)

■ public void set(int idx, E value)

- Update bytes bPE $\times i d x$ to $\mathrm{bPE} \times(i d x+1)-1$
- $\theta(1)$ (if we treat bPE as a constant)
- public int size()
- Return size
- $\theta(1)$

CSE 220 Crossover 2: List Harder

IIIIIIII

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

LinkedList

- public E get(int idx)
- Start at head, and move to the next element idx times. Return the element's value.
- $\theta(i d x), O(N)$

■ public void set(int idx, E value)

- Start at head, and move to the next element idx times.

Update the element's value.

- $\theta(i d x), O(N)$

■ public int size()

- Start at head, and move to the next element until you reach the end. Return the number of steps taken.
- $\theta(N)$

Linked Lists' size

Can we do better?

Store size

```
public class LinkedList<T> implements List<T>
{
    LinkedListNode<T> head = null;
    int size = 0;
    /* ... */
}
```

■ How expensive is public int size() now? $(\theta(1))$

■ How expensive is it to maintain size?
(Extra $\theta(1)$ work on insert/remove).

Storing redundant information can reduce complexity.

Enumeration

```
public int sumUpList(LinkedList<Integer> list)
```

public int sumUpList(LinkedList<Integer> list)
{
{
int total = 0;
int total = 0;
int N = list.size()
int N = list.size()
Optional<LinkedListNode<Integer>> node = list.head;
Optional<LinkedListNode<Integer>> node = list.head;
while(node.isPresent())
while(node.isPresent())
{
{
int value = node.get().value;
int value = node.get().value;
total += value;
total += value;
node = node.get().next;
node = node.get().next;
}
}
return total;
return total;
}

```
}
```


Enumeration

This code is specialized for LinkedLists

- We can't re-use it for an ArrayList.

■ If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

- We need a way to represent a reference to the idx'th element of a list.

Listlterator

```
public interface ListIterator<E>
{
    public boolean hasNext();
    public E next();
    public boolean hasPrevious();
    public E previous();
    public void add(E value);
    public void set(E value);
    public void remove();
}
```


Linked Lists

Access list element by index: $O(N)$
Access list element by reference (iterator): $O(1)$

The List ADT

```
public interface List<E>
    extends Sequence<E> // Everything a sequence has, and...
{
    /** Extend the sequence with a new element at the end */
    public void add(E value);
    /** Extend the sequence by inserting a new element */
    public void add(int idx, E value);
    /** Remove the element at a given index */
    public void remove(int idx);
}
```

Array add(idx, value)

HIIIIIII

$$
\text { array. } \operatorname{add}(i d x=2, \text { value }=5) \leftarrow \theta(N)
$$

Idea 1

Idea: Allocate more memory than we need.

ArrayList

Start with a capacity of 2 .
$1 \theta(1)$
(size now 1)
$2 \theta(1)$
(size now 2)
$32 \cdot \theta(1)$
$4 \theta(1)$
$54 \cdot \theta(1)$
$6 \theta(1)$
$7 \theta(1)$
$8 \theta(1)$
(capacity now 4 ; size now 3)
(size now 4)
(capacity now 8; size now 5)
(size now 6) (size now 7)
(size now 8)
$98 \cdot \theta(1)$
(capacity now 16 ; size now 9)
.. 8 more operations before next $\theta(N)$
... 16 more operations before next $\theta(N)$

ArrayList

- 2 insertions at $\theta(1)$

■ $2 \cdot \theta(1)$ plus 2 insertions at $\theta(1)$ (up to capacity of 4)

- $4 \cdot \theta(1)$ plus 4 insertions at $\theta(1)$ (up to capacity of 8)

■ $8 \cdot \theta(1)$ plus 8 insertions at $\theta(1)$ (up to capacity of 16)

- $16 \cdot \theta(1)$ plus 16 insertions at $\theta(1)$ (up to capacity of 32)
- $32 \cdot \theta(1)$ plus 32 insertions at $\theta(1)$ (up to capacity of 64)

What's the pattern?
($2^{i} \cdot \theta(1)$ copy on the 2^{i} 'th insertion)
For N insertions, how many copies do we perform?
$\left(\log _{2}(N)\right)$

Huh?

Despicable Me; © 2010 Universal Pictures

Amortized Runtimes

$$
T_{\text {add }}(N)= \begin{cases}\theta(1) & \text { if capacity }>\text { size } \\ \theta(N) & \text { otherwise }\end{cases}
$$

$T_{\text {add }}(N) \in O(N)$

- Any one call could be $O(N)$
- But the $O(N)$ case happens rarely.
- ... rarely enough (with doubling) that the expensive call amortizes over the cheap calls.

LinkedList vs ArrayList

```
for(i=0; i < N; i++)
{
        list.add(i);
    }
```

	LinkedList	ArrayList
add(i) once	$O(1)$	$O(N)$
add(i) N times	$O(N)$	$O(N)$

ArrayList.add(i) behaves like it's $O(1)$, but only when it's in a loop.

Amortized Runtime

- The tight unqualified upper bound on add (i) is $\mathrm{O}(\mathrm{N})$ Any one call to add(i) could take up to $O(N)$.
- The tight amortized upper bound on add(i) is $\mathrm{O}(1)$ N calls to add(i) average out to $O(1)$ each. ($O(N)$ for all N calls)

Amortized Runtime

If $T(N)$ runs in amortized $O(f(N))$, then:

$$
\sum_{i=0}^{N} T(N)=N \cdot O(f(N))=O(N \cdot f(N))
$$

Even if $T(N) \notin O(f(N))$

Amortized Runtime

■ Unqualified Bounds: Always true (no qualifiers)

- Amortized Bounds: Only valid in $\sum_{i=0}^{N} T(i)$
- One call may be expensive, many calls average out cheap

List Runtimes

Op	Array	ArrayList	Linked List (by idx)	Linked List (by iter)
get (i)	$\theta(1)$	$\theta(1)$	$\theta(i), O(N)$	$\theta(1)$
set (i,v)	$\theta(1)$	$\theta(1)$	$\theta(i), O(N)$	$\theta(1)$
add(v)	$\theta(N)$	Amm. $\theta(1)$	$\theta(1)$	$\theta(1)$
add(i,v)	$\theta(N)$	$\theta(N)$	$\theta(i), O(N)$	$\theta(1)$
remove(i)	$\theta(N)$	$\theta(N)$	$\theta(i), O(N)$	$\theta(1)$

Merge Sort

Sorting Algorithms

Algorithm	Runtime
BubbleSort	$O\left(N^{2}\right)$
MergeSort	Unqualified $O(N \log N)$
QuickSort	Expected $O(N \log N)$
HeapSort	Unqualified $O(N \log N)$

Bound Guarantees

- $f(N)$ is a [Unqualified] Worst-Case Bound $\quad(T(N) \in O(f(N)))$ The algorithm always runs in at most $c \cdot f(N)$ steps.
- $f(N)$ is an Amortized Worst-Case Bound N invocations of the algorithm always run in at most $N \cdot c \cdot f(N)$ steps.
- $f(N)$ is an Expected Worst-Case Bound $\quad(E[T(N)] \in O(f(N)))$ The algorithm is statistically likely to run in at most $c \cdot f(N)$ steps.

Back to Sequence ADTs

■ Sequence
$\square \operatorname{get}(i), \operatorname{set}(i, \quad v)$
■ List
■ ... and add(v), add(i, v), remove(i),
■ Stack

- push(v), pop(), peek()

■ Queue

- add(v), remove(), peek()

The Stack ADT

A stack of objects on top of one another.
■ Push
Put a new object on top of the stack.

- Pop

Remove the object from the top of the stack.

- Top

Peek at what's on top of the stack.

The Queue ADT

Outside of the US, "queueing" is lining up.
■ Enqueue (add (item) or offer(item))
Put a new object at the end of the queue.
■ Dequeue (remove() or poll())
Remove the object from the front of the queue.
■ Peek (element() or peek())
Peek at what's at the front of the queue.

Queues vs Stacks

■ Queue
First in, First out (FIFO)

- Stack

Last in, First out (LIFO, FILO)

Queues vs Stacks (Implementation)

ADT	Stack		Queue	
using...	Doub. L. List	Array	Doub. L. List	Array
add	$O(1)$	Amortized $O(1)$	$O(1)$	Amortized $O(1)$
remove	$O(1)$	$O(1)$	$O(1)$	$O(1)$

Graphs

A graph is a pair (V, E), where

- V is a set of vertices (sometimes nodes)
- E is a set of vertex pairs called edges

■ Edges and vertices may also store data (labels)

Graph Terminology

- Endpoints of an edge U, V are the endpoints of a.

■ Edges incident on a vertex a, b, d are incident on V.

- Adjacent Vertices U, V are adjacent.
- Degree of a vertex (\# of incident edges) X has degree 5.
- Parallel Edges (same endpoints) h, i are parallel.
- Self-loop (same vertex is start and end) j is a self-loop.

■ Simple Graph
A graph with no parallel edges or self-loops.

Paths

- Path

A sequence of alternating vertices and edges

- Begins with a vertex

■ Ends with a vertex
■ Each edge is preceded/followed by its endpoints

- Simple Path

A path that never crosses the same vertex/edge twice

- Examples
V, b, X, h, Z is a simple path.
$U, c, W, e, X, g, Y, f, W, d, V$ is a path that is not simple.

Cycles

- Cycle

A path that starts and ends on the same vertex.

■ Must contain at least one edge

- Simple Cycle

A cycle where all of the edges and vertices are distinct (except the start/end vertex).

- Examples
$V, b, X, g, Y, f, W, c, U, a, V$ is a simple cycle.
$U, c, W, e, X, g, Y, f, W, d, V, a, U$ is a cycle that is not simple.

Notation

- N : The number of vertices

■ M : The number of edges

- $\operatorname{deg}(v)$: The degree of a vertex

Handshake Theorem

$$
\sum_{v \in V} \operatorname{deg}(v)=2 M
$$

Proof (sketch): Each edge adds 1 to the degree of 2 vertices.

Edge Limit

In a directed graph with no self-loops and no parallel edges:

$$
M \leq N \cdot(N-1)
$$

Proof (sketch):

■ Each pair is connected at most once (no parallel edges)

- N possible start vertices

■ ($N-1$) possible end vertices (no self-loops)

- $N \cdot(N-1)$ distinct combinations possible

The Directed Graph ADT

Interfaces

- Graph<V, E>

■ V: The vertex label type.
■ E: The edge label type.
■ Vertex<V, E>
■ ... represents a single element (like a LinkedListNode)
■ ... stores a single value of type V
■ Edge<V, E>

- ... represents an edge (a pair of vertices)

■ ... stores a single value of type E

Graph Data Structures

What do we need to store for a graph $((V, E))$?

- A collection of vertices
- A collection of edges

Edge List

```
class EdgeList<V, E> implements Graph<V, E>
{
    List<Vertex> vertices = new ArrayList<Vertex>();
    List<Edge> edges = new ArrayList<Edge>();
    /*...*/
}
```


Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(M)$
- incidentEdges: $O(M)$
- hasEdgeTo: $O(M)$

Space Used: $O(N+M)$
(constant space per vertex, edge)

Improving on the Edge List

How can we avoid searching every edge in the edge list to find the incident edges?

Idea: Store each edges in/out edge list.

Adjacency List

```
public class Vertex<V, E>
{
    Node<Vertex> node = null;
    List<Edge> inEdges = new BetterLinkedList<Edge>();
    List<Edge> outEdges = new BetterLinkedList<Edge>();
    /*...*/
}
```


Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$

■ removeVertex: $O(\operatorname{deg}(v))$

- incidentEdges: $O(1)+O(1)$ per next ()
- hasEdgeTo: $O(\operatorname{deg}(v))$

Space Used: $O(N+M)$
(constant space per vertex, edge)

The Adjacency Matrix Data Structure

Destination

	U	V	W
U	-	a	-
흔 V	-	-	b
W	c	-	-

Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$

■ addVertex, removeVertex: $O\left(N^{2}\right)$

- incidentEdges: $O(N)$
- hasEdgeTo: $O(1)$

Space Used: $O\left(N^{2}\right)$

A few more definitions

A graph is connected if. . .
■ ...there is a path between every pair of vertices.

A connected component of G is a maximal, connected subgraph of G

- "maximal" means that adding any other vertices from G would break the connected property.

■ Any subset of G's edges that makes the subgraph connected is fine.

Connected Graph

Disconnected Graph

Depth First Search (DFS)

Primary Goals

- Visit every vertex in graph $G=(V, E)$.

■ Construct a spanning tree for every connected component.

- Side Effect: Compute connected components.
- Side Effect: Compute a path between all connected vertices.
- Side Effect: Determine if the graph is connected.

■ Side Effect: Identify any cycles (if they exist).

- Complete in time $O(N+M)$.

Depth First Search (DFS)

DFS (G)

Input

- Graph $G=(V, E)$

Output

■ Label every edge as a:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

Depth First Search (DFS)

DFSOne(G, v)

Input

- Graph $G=(V, E)$
- Start vertex $v \in V$

Output

■ A spanning tree, rooted at v, to every node in v 's connected component.

Depth First Search (DFS)

DFSOne

1 Initialize Todo Stack with start vertex v (no edge)
2 Retrieve next todo vertex (or return if none left).
3 If the vertex is already visited ${ }^{2}$, return to step 2.
4 Otherwise, mark this vertex as visited.
5 Mark the edge listed in the todo item as a spanning edge.
6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
7 Return to step 2.
${ }^{2}$ It won't be for DFS or BFS, but bear with me...

Breadth First Search (BFS)

BFSOne

1 Initialize Todo Queue with start vertex v (no edge)
2 Retrieve next todo vertex (or return if none left).
3 If the vertex is already visited ${ }^{3}$, return to step 2.
4 Otherwise, mark this vertex as visited.
5 Mark the edge listed in the todo item as a spanning edge.
6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
7 Return to step 2.
${ }^{3}$ It won't be for DFS or BFS, but bear with me...

Dijkstra's Algorithm

Dijkstra One

1 Initialize Todo Priority Queue with start vertex v (no edge)
2 Retrieve next todo vertex (or return if none left).
3 If the vertex is already visited, return to step 2.
4 Otherwise, mark this vertex as visited.
5 Mark the edge listed in the todo item as a spanning edge.
6 Add todo items for every unvisited, adjacent vertex (via the edge to the current vertex).
7 Return to step 2.

Graph Traversal

	DFS	BFS	Dijkstra's Algo
Runtime	$O(N+M)$	$O(N+M)$	$O(N+M \log (M))^{4}$
Visit Order	Last Visited	Closest by Edge Count	Closest by Total Edge Weight
Spanning Tree	Long paths	Fewest Vertices to Root	Shortest Edge Weight to Root

[^0]
New ADT: Priority Queue

PriorityQueue<E> (E must be Comparable)

- public void add(E e): Add e to the queue.
- public E peek(): Return the least element added.
- public E remove(): Remove and return the least element added.

(Partial) Ordering Properties

A partial ordering must be...

■ Reflexive

$$
x \leq x
$$

- Antisymmetric
if $x \leq y$ and $y \leq x$ then $x=y$

■ Transitive
if $x \leq y$ and $y \leq z$ then $x \leq z$

(Total) Ordering Properties

A total ordering must be...

■ Reflexive

$$
x \leq x
$$

■ Antisymmetric

■ Transitive

■ Complete
if $x \leq y$ and $y \leq x$ then $x=y$
if $x \leq y$ and $y \leq z$ then $x \leq z$

Priority Queues

There are two mentalities...
■ Lazy: Keep everything a mess.
■ Proactive: Keep everything organized.
■ Balanced: Keep everything a little sorted.

Lazy Priority Queue

Base Data Structure: Linked List

- public void add(T v)

Append v to the end of the linked list.

- public T remove()
$O(N)$
Traverse the list to find the least value and remove it.

Proactive Priority Queue

Base Data Structure: Linked List

- public void add(T v)

Traverse the list to insert v in sorted order.

- public T remove()

Remove the head of the list.

Binary Min-Heaps

- Directed A directed edge in the tree means \leq
- Binary (max 2 children, easy to reason about)
- Complete (every 'level' except last is full)

■ For consistency, keep all nodes in the last level to the left.
This is a Min-Heap

Priority Queues

Operation	Lazy	Proactive	Heap
add	$O(1)$	$O(N)$	$O(\log (N))$
remove	$O(N)$	$O(1)$	$O(\log (N))$
peek	$O(N)$	$O(1)$	$O(1)$

Trees

■ Child
An adjacent node connected by an out-edge

- Leaf

A node with no children

- Depth of a node

The number of edges from the root to the node

- Depth of a tree

The maximum depth of any node in the tree

- Level of a node

The depth +1

Tree Traversals

- Pre-order (top-down)

■ visit root, visit left subtree, visit right subtree
■ In-order

- visit left subtree, visit root, visit right subtree

■ Post-order (bottom-up)
■ visit left subtree, visit right subtree, visit root

Binary Search Trees

- Binary Tree

■ Each element has (at most) 2 children.
■ Binary Search Tree Constraint

- Each node has a value.

■ Each node's value is greater than its left descendants
■ Each node's value is lesser than (or equal to) its right descendants

■ Set Constraint [optional]
■ Each node's value is unique.

Binary Search Trees

Operation Runtime
 find $\quad O(d)$
 insert $O(d)$
 remove $O(d)$

Balanced Search Trees

- General BST: $d=O(N)$
- Balanced BST: $d=O(\log (N))$
- Complete Tree
- AVL Tree Property
- Red-Black Colorability

AVL Trees

- An AVL Tree (Adelson- $\underline{\text { Velsky }}$ and Landis) is a BST where every node is "depth balanced"

■ balance $(v)=$ height (left) - height (right)
Maintain balance $(v) \in\{-1,0,1\}$

- balance $(b)=0 \rightarrow$ " v is balanced"
- balance $(b)=-1 \rightarrow$ " v is left-heavy"
- balance $(b)=1 \rightarrow$ " v is right-heavy"

■ balance $(v) \in\{-1,0,1\}$ is the AVL tree property

AVL Trees

If balance $(v)=$ height $(l e f t)-\operatorname{height}(r i g h t)$
Then $N>\min \operatorname{Nodes}(d)=\Omega\left(1.5^{d}\right)$
So $d \in O(\log (N))$

If the tree starts off balanced:

- The tree can be re-balanced after an insertion in $\log (N)$ time.

■ The tree can be re-balanced after a removal in $\log (N)$ time.

Red-Black Trees

A BST is Red-Black Colorable if...
■ Every node can be assigned a color, either Red or Black.

- The root is Black.

■ The parent of every Red node is Black.

- The number of Black nodes on every path from a null-leaf to the root is the same (the Black-depth).

Red-Black Trees

If a BST is red-black colorable...
Then the distance from the root to the shallowest null-leaf is at least half the distance from the root to the deepest null-leaf.

Then The upper "half" of the tree is complete.
Then $N>\min \operatorname{Nodes}(d)=\Omega\left(2^{d}\right)$ and $d \in O(\log (N))$

BST Overview

	General BST	AVL Tree	R-B Tree
find	$O(N)$	$O(\log (N))$	$O(\log (N))$
insert	$O(N)$	$O(\log (N))$	$O(\log (N))$
remove	$O(N)$	$O(\log (N))$	$O(\log (N))$

Note 1: R-B Trees are like AVL Trees, but with a better constant.

How do we implement a set?

- List (Array or Linked)?
- Sorted ArrayList?
- Balanced Binary Search Tree (AVL, Red-Black) $O(\log N)$

■ Hash Tables

Hash Functions

Example Hash Functions

■ SHA256 (used by GIT)
■ MD5, BCrypt (used by unix login, apt)
■ MurmurHash3 (used by Scala)
hash (e) is pseudorandom
1 hash (e) ~ uniform random value in [0, Integer. MAX_VALUE)
2 hash(e) always returns the same value for the same e
3 hash(e) is uncorrelated with hash(e') for e $\neq e^{\prime}$

Hash Functions

hash(e) is ...
■ Pseudorandom ("Evenly distributed" over $[0, B)$)
■ Deterministic (Same value every time)

HashSet

- public boolean add(E a)

Insert the element into the list at $\operatorname{hash}(a) \bmod B$.
Expected $O\left(\frac{N}{B}\right)$

- public boolean remove(E a)

Find the element in the list at hash(a) $\bmod B$ and remove it. Expected $O\left(\frac{N}{B}\right)$

- public boolean contains(E a)

Find the element in the list at hash $(a) \bmod B$.
Expected $O\left(\frac{N}{B}\right)$

- public int size()

Return a pre-computed size.

Expected Bucket Size

After N insertions, how many records can we expect in the average bucket?

Let X_{j} be the number of records in bucket j.
After N insertions $0 \leq X_{j} \leq N$:
■ $X_{j}=0$ with $P\left[X_{j}=0\right]=$???
■ $X_{j}=1$ with $P\left[X_{j}=1\right]=$???
■ $X_{j}=2$ with $P\left[X_{j}=2\right]=$???

■ $X_{j}=N$ with $P\left[X_{j}=N\right]=? ? ?$

Expected Bucket Size

For N insertions, we repeat the process: $X_{0, j}, X_{1, j}, X_{2, j}, \ldots X_{N, j}$

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i} X_{i, j}\right] & =\mathbb{E}\left[X_{0, j}\right]+\mathbb{E}\left[X_{1, j}\right]+\ldots+\mathbb{E}\left[X_{N, j}\right] \\
& =\underbrace{\frac{1}{B}+\ldots+\frac{1}{B}}_{N \text { times }} \\
& =\frac{N}{B}
\end{aligned}
$$

■ Expected Runtime of insert, find, remove: $O\left(\frac{N}{B}\right)$
■ Unqualified Runtime of insert, find, remove: $O(N)$

Resizing the Hash Table

- Rehashes required: $\leq \log (N)$.
- The ith rehashing $O\left(2^{i}\right)$ work.
- Total work after N insertions is no more than...

$$
\begin{aligned}
\sum_{i=0}^{\log (N)} O\left(2^{i}\right) & =O\left(\sum_{i=0}^{\log (N)} 2^{i}\right) \\
& =O\left(\left(2^{\log (N)+1}-1\right)\right) \\
& =O(N)
\end{aligned}
$$

- Work per insertion (amortized): $O\left(\frac{N}{N}\right)=O(1)$ (plus the cost of actually inserting into the linked list)

Resizing the Hash Table (Rehashing)

Remember the load factor $\alpha=\frac{N}{B}$
The expected runtime of insert, find, remove is $O(\alpha)$
If we can ensure that $\alpha \leq \alpha_{\text {max }}$ for some constant $\alpha_{\text {max }}$, then $O(\alpha)=O(1)$

After enough inserts to make $\alpha>\alpha_{\max }$ (with B buckets):

- Create a new hash table with $2 B$ buckets.

■ Insert every element e from the original table into the new one according to hash(e) $\bmod 2 B$

Recap: get(x)

Expected Cost

- Find the bucket
- Find the record in the bucket

Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}\right)=O(1+1)=O(1)$

Unqualified Worst-Case Cost

- Find the bucket

■ Find the record in the bucket

$$
\begin{array}{r}
O\left(c_{\text {hash }}\right)^{5} \\
O\left(\alpha \cdot c_{\text {equals }}\right)^{6}
\end{array}
$$

Recap: $\operatorname{add}(\mathrm{x})$

Expected Cost

- Find the bucket
$O\left(c_{\text {hash }}\right)$
- Find the record in the bucket

■ Replace the existing record or append it to the list
Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}+1\right)=O(1+1+1)=O(1)$

Unqualified Worst-Case Cost

■ Find the bucket
$O\left(c_{\text {hash }}\right)$

- Find the record in the bucket
- Replace the existing record or append it to the list

Total: $O\left(c_{\text {hash }}+N \cdot c_{\text {equals }}+1\right)=O(1+N+1)=O(N)$

Recap: remove(x)

Expected Cost

- Find the bucket
O (chash)
- Find the record in the bucket
- Remove the record from the linked list

Total: $O\left(c_{\text {hash }}+\alpha c_{\text {equals }}+1\right)=O(1+1+1)=O(1)$
Unqualified Worst-Case Cost

- Find the bucket
$O\left(c_{\text {hash }}\right)$
- Find the record in the bucket
$O\left(N \cdot c_{\text {equals }}\right)$
- Remove the record from the linked list

Total: $O\left(c_{\text {hash }}+N \cdot c_{\text {equals }}+1\right)=O(1+N+1)=O(N)$

Hash Table Operations

Operation	Unqualified	Amortized	Expected
add	$O(N)$	$O(N)$	$O(1)$
remove	$O(N)$	$O(N)$	$O(1)$
contains/get	$O(N)$	$O(N)$	$O(1)$

Iterating over a Hash Table

A B C D E

Iterating over a Hash Table

■ Visit every hash bucket
■ Visit every element in every hash bucket
Total: $O(B+N)$

Linked Hash Table

Idea: Organize the hash table elements in a linked list

Linked Hash Table

Iterating over a Linked Hash Table

■ Visit every element via linked list
Total: $O(N)$ (no more $O(B)$ factor)
Insert (Changes only)

- Append the new element to the tail of the linked list.

Remove (Changes only)

- Remove the element from its position in the linked list. $O(1)$

Hash Table with Open Addressing


```
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3
```


Cuckoo Hashing


```
\(\operatorname{hash}_{1}(A)=1 ; \operatorname{hash}_{2}(A)=3\)
\(\operatorname{hash}_{1}(B)=2 ; \operatorname{hash}_{2}(B)=4\)
\(\operatorname{hash}_{1}(C)=2 ; \operatorname{hash}_{2}(C)=1\)
\(\operatorname{hash}_{1}(\mathrm{D})=4 ; \operatorname{hash}_{2}(\mathrm{D})=6\)
\(\operatorname{hash}_{1}(E)=1 ; \operatorname{hash}_{2}(E)=4\)
```


Cuckoo Hashing

Find
■ Look at array index hash ${ }_{1} \bmod B$
■ Look at array index hash ${ }_{2} \bmod B$

Cuckoo Hashing

- Find is unqualified $O(1)$
- Remove is unqualified $O(1)$
- Insert is expected $O(1)$ (for low values of α)

Dynamic Hashing

Observation: If $a=N \bmod B$ then either
■ $a=N \bmod 2 B$, or
■ $a+B=N \bmod 2 B$

Doubling the size of the hash table always rehashes every element in a specific bucket to one of two places.

Dynamic Hashing

Example: $\operatorname{hash}(N)=N$

Dynamic Hashing

■ An array (of size B) of pointers to arrays (each of size α). (and some book-keeping metadata)
■ When doubling the array size, only copy the array pointers. (faster than rehashing the entire hash table)

- Only split one bucket at a time
- Only double the array when a bucket being split has only one pointer to it.

A Dynamic Hash Table does not have better asymptotic complexity than a Hash Table with Chaining (but has a better constant factor).

[^0]: ${ }^{4}$ With Heap as Priority Queue

