## CSE-250 Recitation

Sept 11-Sept 12: PA1, Inequalities, Logarithms, and Bounds

## Questions?

- Java?
- PA1?
- Asymptotic Notation?
- Runtime Analysis?


## PA1: Getting Started

- PA1 will revolve around linked lists and how to implement them
- We will start PA1 by writing tests
- Why Test Driven Development?
- Deepens your understanding of the problem
- Enables you to test your code without submitting to Autolab
- Writing code before thinking about the problem will lead to disaster


## PA1: Getting Started

- Remember, understanding the expected behavior of each method is more important than how to make your implementation when writing tests
- Some of the best tests are going to be written by asking "What situations could break my code"
- For our first exercise, we will try to come up with some good linked lists for testing
- Side note: how can we make these lists without relying on methods like insert


## Inequalities Cheat Sheet

$f(n) \geq g(n)$ is true if $f(n) / a \geq g(n) / a($ for any $a>0)$
$f(n) \geq g(n)$ is true if $f(n) * a \geq g(n) * a$ (for any $a>0$ )
$x+a \geq y+b$ is true if $x \geq y$ and $a \geq b$ (for any $a, b$ )
$x \geq y$ is true if $x \geq a$ and $a \geq y$ (for any a)

## Examples

Show that there is some c for which...
$12 \log \left(10 \times 2^{n}\right) \leq c n$
for all $\mathbf{n}$ greater than some $\mathbf{n}_{0}$

## Examples

Show that there is some c for which...
$\mathrm{n}^{2}+\mathrm{n} \log (\mathrm{n}) \leq \mathrm{c} 2^{\mathrm{n}}$
for all $\mathbf{n}$ greater than some $\mathbf{n}_{0}$

## Examples

Let $f(x)$ be a function defined as follows:

- If $x$ is odd, $f(x)=10 x$
- If $x$ is even, $f(x)=100 x^{2}$

Show that there is some $\mathbf{c}_{\text {low }}$ and $\mathbf{c}_{\text {high }}$ for which...
$f(n) \geq c_{\text {low }} n \quad$ and $\quad f(n) \leq c_{\text {high }} n^{2}$
... for all $\mathbf{n}$ greater than some $\mathbf{n}_{\mathbf{0}}$

## Examples

Let $\mathbf{f}(\mathbf{x})$ be a function defined as follows:

- If $x$ is odd, $f(x)=10 x$
- If $x$ is even, $f(x)=100 x^{2}$

Is there a $\mathbf{c}_{\text {low }}$ and $\mathbf{c}_{\text {high }}$ for which...
$f(n) \geq c_{\text {low }} n^{2} \quad$ and $\quad f(n) \leq c_{\text {high }} n$
... for all n greater than some $\mathrm{n}_{0}$

$$
f_{1}(n)=\sum_{i=1}^{5 n}\left(n^{2} 2^{i}\right)
$$

## Examples

For each of the functions to the right:

1. Compute the closed form of the summation
2. Provide a big- $\Theta$ bound for the function.
3. Arrange them in order of complexity class.

$$
\begin{gathered}
f_{2}(n)=\sum_{i=\frac{3}{4} n}^{n} i \\
f_{3}(n)=\sum_{i=1}^{n} \sum_{j=i}^{n} 2
\end{gathered}
$$

$$
\begin{gathered}
f_{4}(n)=\sum_{i=1}^{\log (n)}\left(5 \cdot 2^{i}+n\right) \\
f_{5}(n)=\sum_{i=5}^{\log (n)+5}(3 \cdot i \cdot \log (n))
\end{gathered}
$$

$$
f_{6}(n)=\sum_{i=2}^{4} \log (i)
$$

- Let $a, b, c, n>0$
- Exponent Rule: $\log \left(n^{a}\right)=a \log (n)$
- Product Rule: $\log (a n)=\log (a)+\log (n)$
- Division Rule: $\log \left(\frac{n}{a}\right)=\log (n)-\log (a)$
- Change of Base from $\boldsymbol{b}$ to $\boldsymbol{c}: \log _{b}(n)=\frac{\log _{c}(n)}{\log _{c}(b)}$
- Log/Exponent are Inverses: $b^{\log _{b}(n)}=\log _{b}\left(b^{n}\right)=n$

$$
\begin{aligned}
& \text { 1. } \sum_{i=j}^{k} c=(k-j+1) c \\
& \text { 2. } \sum_{i=j}^{k}(c f(i))=c \sum_{i=j}^{k} f(i) \\
& \text { 3. } \sum_{i=j}^{k}(f(i)+g(i))=\left(\sum_{i=j}^{k} f(i)\right)+\left(\sum_{i=j}^{k} g(i)\right) \\
& \text { 4. } \left.\sum_{i=j}^{k}(f(i))=\left(\sum_{i=\ell}^{k}(f(i))\right)-\left(\sum_{i=\ell}^{j-1}(f(i))\right) \text { (for any } \ell<j\right) \\
& \text { 5. } \sum_{i=j}^{k} f(i)=f(j)+f(j+1)+\ldots+f(k-1)+f(k) \\
& \text { 6. } \left.\sum_{i=j}^{k} f(i)=f(j)+\ldots+f(\ell-1)+\left(\sum_{i=\ell}^{k} f(i)\right) \text { (for any } j<\ell \leq k\right) \\
& \text { 7. } \sum_{i=j}^{k} f(i)=\left(\sum_{i=j}^{\ell} f(i)\right)+f(\ell+1)+\ldots+f(k) \text { (for any } j \leq \ell<k \text { ) } \\
& \text { 8. } \sum_{i=1}^{k} i=\frac{k(k+1)}{2} \\
& \text { 9. } \sum_{i=0}^{k} 2^{i}=2^{k+1}-1
\end{aligned}
$$

