
CSE-250 Recitation
Sept 18-19 : Amortized Runtime

Amortized Runtime Analysis

1

2

3

4

5

6

7

public class Team {

 private List<Player> players;

 public void addPlayer(Player p) { /* ... */ }

 public void importRoster(File f) { /* ... */ }

 /* ... */

}

1

2

3

4

public void addPlayer(Player p) {

 System.out.println("Welcome to the team " + p.name());

 players.add(p);

}

What are the unqualified and amortized runtime bounds of the addPlayer method
when List is a LinkedList? an ArrayList?

Amortized Runtime Analysis

What are the unqualified and amortized runtime bounds of the importRoster
method when List is a LinkedList? an ArrayList?

(You can assume that opening the file, reading a line, and creating a Player are
constant-time calls)

1

2

3

4

5

6

7

8

9

public void importRoster(File f) {

 BufferedReader br = new BufferedReader(new FileReader(f));

 String line;

 while (br.ready()) {

 String line = br.readLine();

 Player p = new Player(line);

 players.add(p);

 }

}

Rationalization of Array Append’s Amortized O(1) runtime.

After n calls to an array whose capacity is n, 𝚹(2n) operations will have been performed
(n constant time appends + n copies into the allocated array).
A reallocation has occurred i times only if there have been 2^i calls to append.
This describes a total of 2^i constant time appends plus

2^0 + 2^1 + 2^2 + 2^3 + … + 2^(i-1} + 2^(i) constant time copy operations.
The total sum is 2^i + sum_{a=0}^{i} { 2^a } = 2^i + 2^(i + 1) -1 = 2^i + 2*2^i - 1 = 3*2^i - 1.
So for n = 2^i calls to append, the Amortized Runtime is O(3*2^i - 1 / 2^i) = O(3*2^i / 2^i) = O(3)
This is not a fluke, nor is it magic. It is a property of summing powers of 2.
Simply, 2^i + 2^i = 2*2^i = 2^(i+1). At any point in the runtime of sequential append, at the worst
case, we will be doing merely double (or some constant factor) the amount of work we had
been doing previously. (Sequentially, O(n) operations, worst case O(2n))

