
CSE 250 Recitation
10/23-10/24 : Graph Representations and Traversals, PA2

Graph Representations

- Given the following edge list, what is the
best algorithm to create the equivalent
adjacency list?

- What is the runtime of the algorithm you
came up with?

DtoH EtoF

CtoE BtoC

AtoD FtoB

HtoE StoB

StoA CtoA

CtoD FtoG

AtoS AtoC

HtoG EtoH

Graph Representations

S StoA, StoB

A AtoS, AtoC, AtoD

B BtoC

C CtoA, CtoD, CtoE

D DtoH

E EtoF, EtoH

F FtoB, FtoG

G

H HtoE, HtoG

- Note that both lists represent the same
graph and both are capable of performing
a graph traversal like DFS or BFS

- However one representation is far more
efficient at performing a graph traversal

Graph Traversal

1. Insert an arbitrary starting node into the
[DATASTRUCTURE]

2. While the [DATASTRUCTURE] is not empty:
a. Remove a node from the

[DATASTRUCTURE]
b. Mark the node as visited
c. Insert all of the node’s unvisited neighbors

into the [DATASTRUCTURE]

1. [DATASTRUCTURE] ← Stack
2. [DATASTRUCTURE] ← Queue

PA2: Implementation

- Now that testing has been completed, we can turn our focus to
implementing PA2

- There are three major functions to implement in PA2:
- computeOutgoingEdges()
- pathWithFewestIntersections() (BFS)
- pathWithShortestDistance() (Dijkstra’s)

- If you haven’t noticed already, we talked about how to implement
computeOutgoingEdges() on the first slide

PA2: Implementation

- The other two functions will require you to coordinate three different data
structures to perform a graph traversal and return the correct path

- Node Scheduling Sequence
- Queue or priority queue depending on type of graph traversal

- Visited Set
- Path Builder Hashmap

- We just saw how to use the scheduler sequence and visited set while
doing the traversal

- With a partner, discuss how you can use a hashmap to efficiently build a
path

PA2: Implementation

- For this assignment, the most efficient way to use the hashmap to build
the path is to:

- Assign the keys to be the id of an intersection (string)
- Assign the values to be the pointer to the edge that lead to the intersection identified as

the key
- For the starting node you can have the value be “Null”

- Once you find the goal intersection you can use your hashmap to build your path
backwards

- Why is this approach better than saving the whole path as the value?

