CSE 250 Recitation

10/23-10/24 : Graph Representations and Traversals, PA2




Graph Representations

Given the following edge list, what is the
best algorithm to create the equivalent
adjacency list?

What is the runtime of the algorithm you
came up with?

DtoH EtoF
CtoE BtoC
AtoD FtoB
HtoE StoB
StoA CtoA
CtoD FtoG
AtoS AtoC
HtoG EtoH




Graph Representations

Note that both lists represent the same
graph and both are capable of performing
a graph traversal like DFS or BFS
However one representation is far more
efficient at performing a graph traversal

StoA, StoB

AtoS, AtoC, AtoD

BtoC

CtoA, CtoD, CtoE

DtoH

EtoF, EtoH

FtoB, FtoG

HtoE, HtoG




Graph Traversal

1. Insert an arbitrary starting node into the
[DATASTRUCTURE]
2. While the [DATASTRUCTURE] is not empty:
a. Remove a node from the
[DATASTRUCTURE]
b. Mark the node as visited
c. Insert all of the node’s unvisited neighbors
into the [DATASTRUCTURE]

1. [DATASTRUCTURE] « Stack
2. [DATASTRUCTURE] < Queue



PA2: Implementation

- Now that testing has been completed, we can turn our focus to
implementing PA2

- There are three major functions to implement in PA2:

computeOutgoingEdges()
pathWithFewestlntersections() (BFS)
pathWithShortestDistance() (Dijkstra’s)

- If you haven't noticed already, we talked about how to implement
computeOutgoingEdges() on the first slide



PA2: Implementation

- The other two functions will require you to coordinate three different data

structures to perform a graph traversal and return the correct path
Node Scheduling Sequence
Queue or priority queue depending on type of graph traversal
Visited Set
Path Builder Hashmap

- We just saw how to use the scheduler sequence and visited set while
doing the traversal

- With a partner, discuss how you can use a hashmap to efficiently build a
path



PA2: Implementation

- For this assignment, the most efficient way to use the hashmap to build
the path is to:

- Assign the keys to be the id of an intersection (string)

- Assign the values to be the pointer to the edge that lead to the intersection identified as
the key

- For the starting node you can have the value be “Null”
- Once you find the goal intersection you can use your hashmap to build your path
backwards

- Why is this approach better than saving the whole path as the value?



