## CSE 250 Recitation

10/30-10/31: Heaps, Dijkstra's Algorithm

## Orderings

We know:

- $A<B$
- $A<C$
- $B<D$
- $B<E$
- $\mathrm{C}<\mathrm{F}$
- $\mathrm{C}<\mathrm{G}$
- $\mathrm{D}<\mathrm{H}$
- What other relationships can we infer?
- What is the smallest number of extra tests we need to...
- Find the smallest value?
- Find the second smallest value?
- Find the third-smallest value?
- Find the fourth-smallest value?


## Heaps

We know:

- $A<B$
- $A<C$
- $B<D$
- $B<E$
- $\mathrm{C}<\mathrm{F}$
- $\mathrm{C}<\mathrm{G}$
- $D<H$



## Heaps

Are the following arrays valid heaps?
$\begin{array}{lllllll}9 & 7 & 4 & 5 & 6 & 2 & 3\end{array}$

## Heaps

Are the following arrays valid heaps?
$\begin{array}{lllllllllll}20 & 7 & 15 & 2 & 5 & 12 & 9 & 6 & 4 & 1 & 3\end{array}$

## Heaps

Find tight bounds for inserting sequence of items into a max heap when the sequence is already sorted in descending order.

## Heapify

Trace the execution of Heapify on the following array
968154153714111021312

## Dijkstra's Algorithm

Like "BFS", but with a Priority Queue

- Visit vertices in order of ascending distance from the start
- Visiting a vertex means enqueuing every adjacent node

Generally, you keep track of the path from the root to each vertex as it's enqueued.

## Dijkstra's Algorithm



- Path from C to F
- Path from A to E

