
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Course Recap/Final Review

mailto:epmikida@buffalo.edu

Announcements

● Fill out your course evaluations!
● Comments about the TAs? Fill out a TA evaluation as well!
● Final exam review session planned for Sat 16th
● Wanna be a TA? Let us know!

2

28%

90%

Course
Roadmap

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Sequence Array,
LinkedList

Amortized Runtime List ArrayList,
LinkedList

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Midterm #1

3

Analysis
Tools/Techniques

ADTs Data
Structures

Stack, Queue ArrayList,
LinkedList

Review recursive analysis Graphs,
PriorityQueue

EdgeList,
AdjacencyList,
AdjacencyMatrix

Trees BST, AVL Tree,
Red-Black Tree,
Heaps

Midterm #2

Review expected runtime HashTables Chaining,
OpenAdressing,
Cuckoo Hashing

Miscellaneous

Course
Roadmap

4

Analysis Tools and
Techniques

5

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

6

Bounded from
Above: Big O

7

f(n)

c · f(n)

The shaded area represents O(f(n)) –
the set of all functions bounded from
above by something f-shaped

Bounded from
Below: Big 𝛀

8

f(n)

The shaded area represents 𝛀(f(n)) –
the set of all functions bounded from
below by something f-shaped

c · f(n)

Complexity
Class: Big 𝚯

9

f(n)

The overlap (green) is 𝚯(f(n))

clow · f(n)

chigh · f(n)

Complexity
Class: Big 𝚯

10

f(n)

𝚯(f(n)) is the set of functions that will
stay between chigh · f(n) and clow · f(n)
(after some constant n0)

clow · f(n)

chigh · f(n)

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

Complexity
Class Ranking

11

𝚯(n
2)

𝚯(n lo
g(n))

𝚯(n)

𝚯(log(n))

𝚯(1)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

12

Formal Definitions

f(n) ∈ O(g(n)) iff exists some constants c, n0 s.t.

f(n) ≤ c * g(n) for all n > n0

f(n) ∈ 𝛀(g(n)) iff exists some constants c, n0 s.t.

f(n) ≥ c * g(n) for all n > n0

f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

13

Shortcut

What complexity class do each of the following belong to:

f(n) = 4n + n2 ∈ 𝚯(n2)

g(n) = 2n + 4n ∈ 𝚯(2n)

h(n) = 100 n log(n) + 73n ∈ 𝚯(n log(n))

Shortcut: Just consider the complexity of the most dominant term

14

Multi-class Functions

What is the tight upper bound of this function? T(n) ∈ O(n2)

What is the tight lower bound of this function? T(n) ∈ 𝛀(n)

What is the complexity class of this function? It does not have one!

15

It is not bounded from above by n,
therefore it cannot be in 𝚯(n)

It is not bounded from below by n2,
therefore it cannot be in 𝚯(n2)

Amortized Runtime

If n calls to a function take 𝚯(f(n))...

We say the Amortized Runtime is 𝚯(f(n) / n)

The amortized runtime of add on an ArrayList is: 𝚯(n/n) = 𝚯(1)
The unqualified runtime of add on an ArrayList is: O(n)

16

Algorithms with Randomness

What about algorithms with a random component, ie QuickSort?

17

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

Remember: This is called the unqualified runtime…we don't take any extra
context into account

18

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

19

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

20

QuickSort Runtime

…and convert it to the expected runtime over the variable X

This looks like the runtime of MergeSort, so now our hypothesis is that our
Expected Runtime is n log(n) 21

What guarantees do you get?

If f(n) is a Tight Bound (Big-𝚯)
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound (Big-O)
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average/Expected Bound
…we don't have any guarantees

← Unqualified runtime

22

ADTs and Data Structures

23

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

24

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

25

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Think about the Linked List we are
implementing for PA1.

The internal structure and the mental
model of our sequence are very

different.

26

The Sequence ADT

27

1

2

3

4

5

6

public interface Sequence<E> {

 public E get(idx: Int);

 public void set(idx: Int, E value);

 public int size();

 public Iterator<E> iterator();

}

Arrays and Linked Lists in Memory 28

The List ADT

29

1

2

3

4

5

6

7

8

9

10

11

public interface List<E>

 extends Sequence<E> { // Everything a sequence has, and...

 /** Extend the sequence with a new element at the end */

 public void add(E value);

 /** Extend the sequence by inserting a new element */

 public void add(int idx, E value);

 /** Remove the element at a given index */

 public void remove(int idx);

}

30

Runtime Summary

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

Stacks and Queues

31

Variants on Sequences (more ADTs)

Stack
● LIFO: last in first out
● push elements to the top of the stack
● pop elements from the top of the stack

Queue
● FIFO: first in first out
● enqueue elements to the end of the queue
● dequeue elements from the front of the queue

PriorityQueue
● Elements ordered by priority
● dequeue removes the highest priority element (smallest element in Java)

32

Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1))
● Pop (take item off top of stack) 𝚯(1)
● Peek (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Peek (peek at the item in the front of the queue) 𝚯(1)

Stacks and Queues can be easily implemented with Arrays and Linked Lists. PriorityQueues
can be…but not very efficiently…we'll get back to that when we see Trees 33

Graphs

34

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
…are elements
…store a value of type V

Edges
…are also elements
…store a value of type E

35

A (Directed) Graph ADT

What can we do with a Graph?

● Iterate through the vertices
● Iterate through the edges
● Add a vertex
● Add an edge
● Remove a vertex
● Remove an edge

36

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

public interface Graph<V, E> {

 public Iterator<Vertex> vertices();

 public Iterator<Edge> edges();

 public Vertex addVertex(V label);

 public Edge addEdge(Vertex orig, Vertex dest, E label);

 public void removeVertex(Vertex vertex);

 public void removeEdge(Edge edge);

}

37

A (Directed) Graph ADT

What can we do with a Vertex?
● Get it's label
● Get the outgoing edges
● Get the incoming edges
● Get all incident edges
● Check if it's adjacent to another Vertex

38

A (Directed) Graph ADT

What can we do with an Edge?
● Get it's label
● Get the incident vertices

39

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

9

10

11

12

13

public interface Vertex<V,E> {

 public V getLabel();

 public Iterator<Edge> getOutEdges();

 public Iterator<Edge> getInEdges();

 public Iterator<Edge> getIncidentEdges();

 public boolean hasEdgeTo(Vertex v);

}

public interface Edge<V,E> {

 public Vertex getOrigin();

 public Vertex getDestination();

 public E getLabel();

} 40

Implementation Attempt 1: Edge List

Data Model:

A List of Edges
(LinkedList)

A List of Vertices
(LinkedList)

An EdgeList is exactly what it sounds like, a single big list of edges
(with a list of vertices as well)

41

Edge List Summary

42

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph

43

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

44

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

45

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

Now we already know what
edges are incident without
having to check them all

46

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

47

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

48

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

49

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 50

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 51

← Mark the vertex as VISITED (so we'll never try to visit it again)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 52

Check every outgoing edge (every possible
way we could leave the current vertex)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 53

Follow the unexplored edges

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 54

If it leads to an unexplored vertex, then it is a
spanning edge. Recursively explore that vertex.

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 55

Otherwise, we just found a cycle

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total

 O(|V| + |E|)

We can also implement DFS without recursion by using a Stack!

56

Breadth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E) in increasing order of distance from the start

● Construct a spanning tree for every connected component
○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles
○ Side Effect: Identify shortest paths to the starting vertex

● Complete in time O(|V| + |E|), with memory overhead O(|V|)

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 59

Use a queue to keep track of what vertices we
want to visit (basically a running TODO list)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 60

Dequeue a vertex from the
Queue and check all of it's
outgoing edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 61

When we find a new vertex, mark
it as VISITED, and add it to our
TODO list.

Remember, our TODO list is a
Queue (FIFO) so whatever we
enqueud first will be the next
thing we dequeue (and explore)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 62

When doing BFS we label edges
that return to visited vertices as
CROSS edges

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex O(|E|) total

 O(|V| + |E|)

63

Djikstra's Algorithm

● Both BFS and DFS search the whole graph
○ DFS – Exploration order based on a Stack (LIFO)
○ BDS – Exploration order based on a Queue (FIFO)
○ The paths BFS finds are the shortest paths in terms of # of edges

● Djikstra's Algorithm finds the shortest path in terms of total distance
○ Can't rely on Stack or Queue – need an ADT that orders the vertices

64

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

65

Create a new PriorityQueue and
insert the starting point with a
distance of 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

66

When we pull something out of the
PriorityQueue, if it is still
UNEXPLORED then we just found
the shortest path to that vertex, and
we can mark it as VISITED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

67

Add each unexplored neighbor to the PriorityQueue.
Set it's distance equal to our current distance plus the weight of the
edge to get to the neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

68

What is the complexity?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

69

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

70

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Each vertex may be added once per incoming edge. So
the size of the PriorityQueue can get as large as |E|

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

71

What is the complexity? O(|V| + |E| log(|E|))

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Label the |V| vertices |E| adds/removes to the PriorityQueue

Trees

72

Types of Trees
Covered

73

Trees

Binary Trees

Heaps BSTs

AVL Red-Black

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

74

A max heap would
reverse this ordering

The MinHeap ADT

void pushHeap(T value)
Place an item into the heap

T popHeap()
Remove and return the minimal element from the heap

T peek()
Peek at the minimal element in the heap

int size()
The number of elements in the heap

75

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current < parent

a. Swap current with parent
b. Set current = parent

What is the complexity (or how many swaps occur)? O(log(n))

76

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current = root
2. While current has a child < current

a. Swap current with its smallest child
b. Set current = child

What is the complexity (or how many swaps occur)? O(log(n))

77

Priority Queues

Operation Lazy Proactive Heap

add O(1) O(n) O(log(n))

poll O(n) O(1) O(log(n))

peek O(n) O(1) O(1)

78

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Idea: Use an ArrayList

79

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 4 5 2 4 10 4 80

4

1

3 1

54 2 4

10

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key
● For every node XR in the right subtree of node X: XR.key > X.key

X partitions its children

81

Is this a valid
BST?
Yes!

82

6

4 10

51 7 11

3

2

8

9

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)
3. Is k less than root.value's key? (if yes, search left subtree)
4. Is k greater than root.value's key? (If yes, search the right subtree)

83

Inserting an Item

Goal: Insert a new item with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)
3. Is k less than root.value's key? (call insert on left subtree)
4. Is k greater than root.value's key? (call insert on right subtree)

84

Removing an Item

Goal: Remove the item with key k from a BST rooted at root

1. find the item
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

85

BST Operations

What is the runtime in terms of n? O(n)

What about the lower bound? 𝛀(log(n))

Can we do better? YES!

Operation Runtime

find O(d)

insert O(d)

remove O(d)

86

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 87

Rebalancing Trees (rotations)

Make A the left child of B

What about Y?

Make it the right child

of A

A

B

X Y Z

Rotate(A, B) 88

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B) 89

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 90

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1

91

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

92

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

93

Removing Records

● Removal follows essentially the same process as insertion
○ Do a normal BST removal
○ Go back up the tree adjusting balance factors
○ If you discover a balance factor that goes to +2/-2, rotate to fix

94

Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
● Therefore after insert/remove into an AVL tree, we can reinforce AVL

constraints with one (or two) rotations
○ We only need to make one trip back up the tree to do so
○ Therefore insert/remove is still O(d) = O(log(n)) 95

Maintaining Balance - Another Approach

Enforcing height-balance is too strict (May do “unnecessary” rotations)

Weaker (and more direct) restriction:
● Balance the depth of empty tree nodes
● If a, b are EmptyTree nodes, then enforce that for all a, b:

○ depth(a) ≥ (depth(b) ÷ 2)

or

○ depth(b) ≥ (depth(a) ÷ 2)

96

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

Therefore enforcing these constraints means that
tree depths is O(log(n))...

So how do we enforce them (efficiently)?

If no empty node has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

97

Red-Black Trees

To Enforce the Depth Constraint on empty nodes:

1. Color each node red or black
a. The # of black nodes from each empty node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a

98

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes
along the path back to the root. All 3 in this case ✓

Confirm no red nodes have red parents ✓ 99

Red-Black Tree

Note: Each insertion creates at most one red-red parent-child conflict
● O(1) time to recolor/rotate to repair the parent-child conflict
● May create a red-red conflict in grandparent

○ Up to d/2 = O(log(n)) repairs required, but each repair is O(1)
● Insertion therefore remains O(log(n))

Note: Each deletion removes at most one black node (red doesn't matter)
● O(1) time to recolor/rotate to preserve black-depth
● May require recoloring (grand-)parent from black to red

○ Up to d = O(log(n)) repairs required
● Deletion therefore remains O(log(n))

100

BST Operations

The tree operations on a BST are always O(d) (they involve a constant
number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth

Operation BST AVL Red-Black

find O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

insert O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

remove O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

101

HashTables

102

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item key)

103

The Set ADT

void add(T element)

Store one copy of element if not already present

boolean contains(T element)

Return true if element is present in the set

boolean remove(T element)

Remove element if present, or return false if not

104

Implementing Sets/Bags

105

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST O(d) = O(n) O(d) = O(n) O(d) = O(n)

Balanced BST O(d) = O(log(n)) O(d) = O(log(n)) O(d) = O(log(n))

Implementing Sets/Bags

106

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST O(d) = O(n) O(d) = O(n) O(d) = O(n)

Balanced BST O(d) = O(log(n)) O(d) = O(log(n)) O(d) = O(log(n))

Can we improve on this even further?

Finding Items

When implementing these operations with a BST where is most of "cost" of
each algorithm coming from? Finding the element

So…let's skip the search
contains => find the element
add => find the insertion point, then add (the add is often O(1))
remove => find the element, then remove (the remove is often O(1))

What if we could just…skip the find step?
What if we knew exactly where the element would be? 107

Assigning Bins

Which data structure has constant lookup if we know where our element is
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: creating a set of movies stored by first letter of title, String →[0,26)

108

Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

This computation is O(1)

109

Assigning Bins

A F G H…B … Z

add("Babadook") → "Babadook"[0] == "B" == 1

HalloweenGet OutBabadook Friday the
13th

110

Assigning Bins

A F G H…B … Z

contains("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutBabadook Friday the
13th

Find in constant time!

111

Assigning Bins

A F G H…B … Z

contains("Scream") → "Scream"[0] == "S" == 18

HalloweenGet OutBabadook Friday the
13th

Determine that "Scream" is not in the Set in constant time!

112

Assigning Bins

A F G H…B … Z

What about: contains("Hereditary")?

HalloweenGet OutBabadook Friday the
13th

Once we know the location, we still need to check for an exact match.

"Hereditary"[0] == "H" == 7, Array[7] != "Hereditary"

Determine that "Hereditary" is not in the Set in constant time! 113

Assigning Bins

Pros
● O(1) insert
● O(1) find
● O(1) remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)

114

Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein

∅

Making each bucket a linked
list solves the collision

problem → 115

LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our
constant time operations?

How many elements are we expecting to end up in each bucket?

Depends partially on our choice of Hash Function

116

Picking a Hash Function

Desirable features for h(x):
● Fast — needs to be O(1)
● "Unique" – As few duplicate bins as possible

117

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

118

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in? 73 % 7 = 3

0 1 2 3 4 5 6

119

Pseudo-Random Hash Function

120

Pseudo-Random Hash Function

121

Pseudo-Random Hash Function

122

Pseudo-Random Hash Function

…given this information, what do the
runtimes of our operations look like?123

Pseudo-Random Hash Function

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: O(n)

124

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!

125

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time
● There are expected to be n/N elements in that bucket

○ So runtime for all operations is expected O(1) + O(n/N)

126Next goal: Make this a constant

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

127

Recap of HashTables (so far…)

Current Design: HashTable with Chaining
● Array of buckets
● Each bucket is the head of a linked list (a "chain" of elements)

128

Runtime for apply(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)
3. Total: O(chash + n · cequality) = O(n)

129

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

Only one extra constant-time step to remove

130

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + 3) = O(n)

One additional constant-time
step to prepend, and then
potentially the need to
rehash, but that is amortized
O(1)

131

HashTables with Chaining

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 2

0 1 2 3 4 5 6BD A E
CF

Collisions are resolved by adding the
element to the buckets linked list

132

HashTables with Open Addressing

hash(A) = 4 ← no collision

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

133

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5 ← no collision

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

134

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

C

135

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B C

136

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2 ← no collision!

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CD

137

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6 ← collision! cascade to 0

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE

138

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4 ← collision! Cascade all the way to 1

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE F

139

Cuckoo Hashing

Idea: Use two hash functions, hash1 and hash2

To insert a record X:

1. If hash1(X) and hash2(X) are both available, pick one at random
2. If only one of those buckets is available, pick the available bucket
3. If neither is available, pick one at random and evict the record there

a. Insert X in this bucket
b. Insert the evicted record following the same procedure

140

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A

141

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

142

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

C can't go in either bucket, so evict one at
random (let's say B) and reinsert the evicted
element

C

143

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

144

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

145

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B D

146

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

147

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3?

148

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3? We will loop infinitely trying to
evict…so limit the number of eviction
attempts then do a full rehash 149

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of apply/remove?

150

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of apply/remove?

1. Check 2 different buckets: O(1)
2. That's it…no chaining, cascading etc…

Apply and remove are GUARANTEED O(1) with Cuckoo Hashing

151

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST O(d) = O(n) O(d) = O(n) O(d) = O(n)

Balanced BST O(d) = O(log(n)) O(d) = O(log(n)) O(d) = O(log(n))

HashTable expected O(1) expected O(1) expected O(1)

Implementing Sets/Bags

HashTable Drawbacks?

…So the expected runtime of all operations is O(1)

Why would you ever use any other data structure?

● HashTables do not preserve ordering
● HashTables may waste a lot of memory
● Rehashing can be expensive
● Only guarantee on lookup time is that it is O(n)

153

Misc Topics

154

k-D Trees

● Can generalize to k>2 dimensions
○ Depth 0: Partition on Dimension 0
○ Depth 1: Partition on Dimension 1
○ …
○ Depth k-1: Partition on Dimension k-1
○ Depth k: Partition on Dimension 0
○ Depth k+1: Partition on Dimension 1
○ Depth i: Partition on Dimension (i mod k)

● In practice, range() and knn() become ~ O(n) for k > 3
○ If a subtree’s range overlaps with the target in even one dimension, we

need to search it. (Curse of Dimensionality)

The name k-D tree comes from
this generalization

(k-Dimensional Tree)

https://en.wikipedia.org/wiki/Curse_of_dimensionality

k-D Tree

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

156

Partitions on x

Partitions on y

Partitions on x

Quad/Oct Trees Revisited

Idea: Let's organize the data (spatially) in a tree structure
● 2D space → use a quad tree
● 3D space → use an oct tree (each node has at most 8 children)

Unlike last time, let's partition the space we are simulating, rather than
the points in the space

157

Space Partitioning - 2D Example

Create a quad-tree by recursively
partitioning the space

● Divide the space evenly until there
is only one element per partition

● Internal tree nodes represent the
partitions, leaves are the actual
elements

158

Space Partitioning - 2D Example

159

∅ ∅

∅

Other Problems: Ray/Path Tracing

Which object does this ray of light hit?
Do we have to check every single object?
How can we organize these objects?

160

Other Problems: Ray/Path Tracing

161

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

Other Problems: Ray/Path Tracing

162

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

High-Level Summary

● We've seen both trees and hash tables as effective ways to organize
our data if we know we are going to be searching it often

● HashTables can be great for exact lookups
○ Think PA3: you may want to lookup a person with an exact (birthday,

zipcode) pair, and HashTable lets you do that very fast
● Trees and tree like structures work very well for "fuzzier" searches

○ What is "close" to this point? What object might this projectile hit? etc
○ The input to your search is not necessarily an exact element in your tree,

but the tree organizes the data in a way that directs your search

163

Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not
necessarily only for runtime growth functions…

Runtime Bounds (or Runtime Complexity)
● The algorithm takes O(...) time

Memory Bounds (or Memory Complexity)
● The algorithm needs O(...) storage

I/O Bounds (or I/O Complexity)
● The algorithm performs O(...) accesses to slower memory

164

The Memory Hierarchy (simplified)

Cache

Memory (RAM)

Solid State Drives (SSDs)

Hard Disk Drives (HDDs, "Spinning Rust")

Faster Bigger

165

Improving on Fence Pointers ISAM Index

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0
to find Level 1 page

2. Load and search
Level 1 page to find

Level 2 page

3. Load and search
Level 2 page to find

data page

4. Load and search data
page to find the record

166

ISAM Index

What if the data changes?

167

7 10 12 21 27

B+ Trees

Keep free space in your pages…but not too much free space

12 27

1 3 6 7 8 9 10 11 12 14 19 21 22 27

Ensure all pages are at least
half full

If a new
element gets
added to a full
page, split it
into two pages

168

Lossy Sets

LossySet<T>

void add(T t)

● Insert t into the set (kind of)

boolean contains(T t)

● If t is in the set ALWAYS return true
● If t is not in the set USUALLY return false (returning true is OK)

Lossy Set

What does this gain for us?

Idea: If apply doesn't always need to be right, we don't need to store everything

170

Lossy Set Example

add("Frankenstein") apply("Scream")? TRUE
add("Get Out") apply("Saw")? TRUE
add("Scream") apply("The Candyman")? FALSE
add("Hellraiser") apply("Dracula")? FALSE
add("Us") apply("Friday the 13th")? TRUE
add("Friday the 13th")

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

171

Thanks for a great semester!

172

