
CSE 250 Fall 2024

Programming Assignment #2
Tests due: 10/22/24 @ 11:59pm

Implementation due: 10/29/24 @ 11:59pm

Assignment Link: https://classroom.github.com/a/IenOxKj-
Map Data: https://cse.buffalo.edu/courses/cse250/resources/buffalo_map.xml

Please read through the entire writeup before beginning the programming assignment

Objectives
1. Define methods to efficiently explore a graph representing a street map

a. Generate an adjacency list for an graph that only stores an edge list to make
searching the graph more efficient

b. Search the graph to find a path from a given starting intersection to a given
ending intersection that minimizes the number of intersections traveled through

c. Search the graph to find a path from a given starting intersection to a given
ending intersection that minimizes distance traveled

d. Search the graph to find all points reachable within a certain distance from a
given starting point

Useful Links
1. The Java API

a. HashMap

b. PriorityQueue

c. Comparator

d. Comparable

2. Testing with JUnit

https://classroom.github.com/a/IenOxKj-
https://cse.buffalo.edu/courses/cse250/resources/buffalo_map.xml
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://junit.org/junit5/docs/current/user-guide/

CSE 250 Fall 2024

Submission Process, Late Policy and Grading
Testing due date: 10/22/24 @ 11:59PM
Implementation due date: 10/29/24 @ 11:59PM
Total points: 30 (5 for testing + 20 for implementation + 5 for runtime)

The project grade is the grade assigned to the latest (most recent) submission made to Autolab
(or 0 if no submissions are made). Autolab will pull your submission from your GitHub repository,
so you must make sure that any changes you want to be included in your grade have been
committed and pushed.

● If your submission is made before the deadline, you will be awarded 100% of the points
your project earns.

● If your submission is made up to 24 hours after the deadline, you will be awarded 75% of
the points your project earns.

● If your submission is more than 24 hours after the deadline, but within 48 hours of the
deadline, you will be awarded 50% of the points your project earns.

● If your submission is made more than 48 hours after the deadline, it will not be accepted.

You will have the ability to use three grace days throughout the semester, and at most two per
assignment (since submissions are not accepted after two days). Using a grace day will negate
the 25% penalty per day, but will not allow you to submit more than two days late. Please plan
accordingly. You will not be able to recover a grace day if you decide to work late and your score
is not sufficiently higher. Grace days are automatically applied to the first instances of late
submissions, and are non-refundable. For example, if an assignment is due on a Friday and you
make a submission on Saturday, you will automatically use a grace day, regardless of whether
you perform better or not. Be sure to test your code before submitting, especially with late
submissions in order to avoid wasting grace days.

Keep track of the time if you are working up until the deadline. Submissions become late after
the set deadline. Keep in mind that submissions will close 48 hours after the original deadline
and you will not be able to submit your code after that time.

Note: No late submissions will be accepted for the testing
portion of the assignment, and no grace days can be used on

the testing portion of the assignment.

CSE 250 Fall 2024

Setup
In order to complete this project, you must have completed PA0. If you are working on a
machine other than the one you used in PA0, you must at least complete steps 2 and 4 in order
to get IntelliJ and GitHub working properly.

Once you have ensured your development environment is setup as in PA0, you can accept the
PA2 assignment in GitHub Classroom (here), and create a new IntelliJ project from VCS with
your newly created repository.

Instructions
In this assignment you will implement a set of tools for computing directions between
intersections in downtown Buffalo. Specifically, you will implement MapUtils, which includes the
construction of an adjacency list, and two different implementations of graph traversal that
compute shortest paths between locations according to two different metrics.

Note: You must NOT modify any files other than MapUtils.java and MapUtilsTests.java to
complete the lab.

As with PA1, the first phase of PA2 will be to write tests which must be able to pass on correct
implementations of the MapUtils functions, and fail broken implementations. The second phase
will be to implement the MapUtils functions yourself.

After you complete your tests, make sure to commit and push your work to GitHub, and submit
to the PA2 testing submission in Autolab. After completing your implementation, make sure to
commit and push your work to GitHub, and submit to the PA2 implementation submission in
Autolab.

Hint: It is advised that you commit and push frequently rather than waiting until you've
completed everything.

Hint: Although you will get feedback from Autolab about correctness of your solutions, you
should get in the habit of testing locally, and adding test cases as needed. This will be a more
effective/efficient means of development, and will also give you a better understanding of the
content of this programming assignment in the process.

https://classroom.github.com/a/IenOxKj-

CSE 250 Fall 2024

0. Testing Phase (due 10/22/24)

Modify the file MapUtils.java to include new test cases.
Your test cases will first be run against a correct implementation of MapUtils. If your tests fail
the correct implementation you will receive 0 points for the testing phase.
Your test cases will then be run against several broken implementations of MapUtils. You will
get points for each broken implementation that at least one of your tests fail.

1. Generate Adjacency Lists

Implement the following function in MapUtils:

public static Map<String, List<Edge>> computeOutgoingEdges(StreetGraph graph)

The output of this function should be a Map containing an entry for every Intersection
identifier that appears in the from field of at least one Edge in the graph's edges field.

● The key should be the identifier of the intersection
● The value should be a collection of every Edge whose from field is equal to the key

For a graph with m edges, this function should run in O(m).

2. Find the Path with the Fewest Intersections

Implement the following function in MapUtils:

public static List<Edge> pathWithFewestIntersections(

StreetGraph graph,

Map<String, List<Edge>> outgoingEdges,

String from,

String to)

This function should return a path between the intersection with identifier from, to the
intersection with identifier to, with the fewest number of path segments possible. If there is no
valid path then an empty list should be returned.

The outgoingEdges argument passed will be the adjacency list computed by calling your
computeOutgoingEdges function on graph.

For a graph with m edges and n vertices, this function should run in O(m + n).

CSE 250 Fall 2024

3. Find the Path with the Shortest Distance

Implement the following function in MapUtils:

public static List<Edge> pathWithShortestDistance(

StreetGraph graph,

Map<String, List<Edge>> outgoingEdges,

String from,

String to)

This function should return a path between the intersection with identifier from, to the
intersection with identifier to. The returned path should contain path segments whose distance
sums up to the smallest distance possible. If there is no valid path then an empty list should be
returned.

The outgoingEdges argument passed will be the adjacency list computed by calling your
computeOutgoingEdges function on graph.

For a graph with m edges and n vertices, this function should run in O(m log(m)).

4. Find ALL Intersections within a Specified Distance

Implement the following function in MapUtils:

public static List<Intersection> intersectionsWithinRange(

StreetGraph graph,

Map<String, List<Edge>> outgoingEdges,

String intersection,

Double distance)

This function should return a list of ALL intersections that can be reached from intersection

by traveling along paths whose edge weights sum up to at most distance km. The list should
not include intersection.

The outgoingEdges argument passed will be the adjacency list computed by calling your
computeOutgoingEdges function on graph.

For an arbitrary graph with m edges and n vertices, if N of those intersections can be reached
from intersection in at most distance, and M is the total number of edges incident to at least
one of those N vertices, this function should run in O(M log(M)) time.

CSE 250 Fall 2024

5. Runtime complexity

The final 5 points for this assignment will come from tests that check that each of the functions
described above run in the correct complexity.

Additional Notes

StreetGraph
Input to most operations in this assignment will be passed via an instance of the StreetGraph
class. There are two useful instance fields:

1. graph.intersections: A collection of street intersections, organized by the
intersection's identifier. An Intersection consists of an identifier, and a pair of
geospatial coordinates. You can find the (approximate) distance in km between two
Intersections a and b by calling a.distanceTo(b)

2. graph.edges: A collection of edges between intersections (i.e., street segments). An
Edge object contains two intersection identifiers (see graph.intersections) for the
from and to intersections it connects (remember, these are directed edges), as well as
the name of the street. Two-way streets are represented as two individual edges, one for
each direction.

An example data file (as passed to StreetGraph.load) can be downloaded from the course
website (here). Right click on the link and click Save As to download. See Main.java for how to
load the graph into your program.

Place the downloaded file in the data directory of your project. This file follows the standard
OpenStreetMap XML format. Feel free to download your own examples from OSM, or create
your own.

DO NOT COMMIT ANY DATASETS TO YOUR PROJECT, THEY ARE QUITE LARGE

Notice that StreetGraph is an implementation of the EdgeList data structure discussed in class.
The first function in MapUtils that needs implementation generates an adjacency list for
StreetGraph. Rather than storing the adjacency lists for each vertex in the vertex themselves, it
creates a Map from vertices to lists of edges, but it accomplishes the same goal of allowing us
quick access to the outgoing edges for a particular vertex in order to make traversal more
efficient. If you are unsure of what the difference is between an edge list and adjacency list
implementation or how it affects the search process please review the relevant lecture material.

https://cse.buffalo.edu/courses/cse250/resources/buffalo_map.xml
https://wiki.openstreetmap.org/wiki/OSM_XML

CSE 250 Fall 2024

Graph Traversals
Recall that we discussed several forms of graph traversal in class, using different data
structures to control the order in which newly visited vertices are explored. Specifically, we
considered:

● Depth First Search (DFS), which uses a Stack; Vertices adjacent to the most recently
explored vertex are explored first.

● Breadth First Search (BFS), which uses a Queue; Vertices are explored in the order in
which they are discovered.

● Djikstra's algorithm, a variant of Breadth First Search, where we explore vertices
according to some sort of priority order, by using a PriorityQueue. For example, if each
edge is assigned the distance one needs to travel to cross it, then we can assign a
higher priority to vertices closer to the origin vertex.

One of the properties of BFS is that when we first visit a vertex, we know we are visiting it via
the shortest path from the origin in terms of number of edges. Similarly, if we are using Djikstra's
algorithm the first time we visit a vertex we know we are visiting it via the shortest path from the
origin in terms of total distance.

Note: When we can consider a vertex as visited varies slightly when doing BFS vs Djiktra's.
With BFS we can mark a vertex as visited as soon as we enqueue it into our work list, since we
know that at that point in the search there are no other shorter paths to that vertex in terms of
number of edges. For Djikstra's however, there could be a shorter path in terms of total distance
that we have not discovered yet, so we can only consider a vertex as visited when we dequeue
it from our PriorityQueue, since at that point we know it is the closest vertex to the origin that we
have not yet visited.

CSE 250 Fall 2024

HashMaps in Java
Parts of this programming assignment rely on the HashMap class in Java to store various pieces
of information, both as part of the StreetGraph class, and potentially as part of your
implementations of the different search algorithms.

HashMaps are an associative collection that stores key-value pairs, and allows efficient
lookup/updates by key. The relevant methods are:

// Stores (key,value) in the map, returning the previous value if it existed

public V put(K key, V value)

// If (key, value) is in the map, returns value, else returns null

public V get(K key)

// If (key,value) is in the map, returns value, else returns default

public V getOrDefault(K key, V default)

In this programming assignment you may assume the above operations run in O(1) time. (They
actually run in expected O(1) time…but we will cover this in more detail later in the semester)

PriorityQueues in Java
Java provides an implementation of the PriorityQueue ADT based on a binary heap.
PriorityQueue supports the standard ADT operations, including add, poll, peek and size.

When you create a PriorityQueue in Java, the elements will be stored using their natural
ordering. For user-defined classes, you can define their natural ordering by having the class
implement the Comparable interface. If you would like to use an ordering other than the natural
ordering, you can supply the PriorityQueue with a Comparator object at instantiation.

Hint: In order to utilize a PriorityQueue for Djikstra's algorithm, you may need to define a
custom element type based on what you would like to store in the PriorityQueue. You can
make a private class within MapUtils for this purpose. If you do so, you will have to tell your
PriorityQueue how to order your objects as described above (make your private class
implement the Comparable interface, or create a Comparator object).

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

CSE 250 Fall 2024

Other Tips
1. Before you actually start writing tests, first draw out a number of example graphs. They

don't have to be particularly large or complex. For each graph, think about what the
different functions being implemented in this assignment should return under various
circumstances. Then start asking "what if" questions that might lead to interesting
situations, or for less thorough implementations to fail.

a. "What if I add another edge here that creates a cycle?"
b. "What if there is not a path between these two nodes?"
c. "What if there are multiple paths between these two nodes (with certain

properties)?
d. etc.

These questions might lead you to a few additional test cases or modifications to your
example graphs you had not considered.

2. Once you start implementing, focus on a single function at a time and work in the order
in which they are described. The functions in this programming assignment are all pretty
self-contained. They also increase in complexity, so tackling computeOutgoingEdges

first will be a good warm-up for the remaining functions and should allow you to start
getting at least some points for your submission.

3. For the traversal functions, remember you have complete control over what you store in
your work list. In class we simply stored the vertices, but you have the freedom to store
extra information as needed.

4. For runtime complexity, remember to be aware of the cost of the various operations you
are performing on your collections. Especially when dealing with paths, remember that
for large graphs the paths can get quite long, and the cost of making copies will add up.

CSE 250 Fall 2024

Academic Integrity
As a gentle reminder, please re-read the academic integrity policy of the course. I will continue
to remind you throughout the semester and hope to avoid any incidents.

What Constitutes a Violation of Academic Integrity?
These bullets should be obvious things not to do (but commonly occur):

● Turning in your friend’s code/write-up (obvious).
● Turning in solutions you found on Google with all the variable names changed (should

be obvious). This is a copyright violation, in addition to an AI violation.
● Turning in solutions you found on Google with all the variable names changed and 2

lines added (should be obvious). This is also a copyright violation.
● Paying someone to do your work. You may as well not submit the work since you will fail

the exams and the course.
● Posting to forums asking someone to solve the problem.

Note: Aggregating every [stack overflow answer|result from google|other source] because you
"understand it" will likely result in full credit on assignments (if you aren't caught) and then failure
on every exam. Exams don't test if you know how to use Google, but rather test your
understanding (i.e., can you understand the problems to arrive at a solution on your own). Also,
other students are likely doing the same thing and then you will be wondering why 10 people
that you don’t know have your solution.

Other violations that may not be as obvious:
● Working with a tutor who solves the assignment with you. If you have a tutor, please

contact me so that I may discuss with them what help is allowed.
● Sending your code to a friend to help them. If another student uses/submits your code,

you are also liable and will be punished.
● Joining a chatroom for the course where someone posts their code once they finish, with

the honor code that everyone needs to change it in order to use it.
● Reading your friend’s code the night before it is due because you just need one more

line to get everything working. It will most likely influence you directly or subconsciously
to solve the problem identically, and your friend will also end up in trouble.

What Collaboration is Allowed?
Assignments in this course should be solved individually with only assistance from course staff
and allowed resources. You may discuss and help one another with technical issues, such as
how to get your compiler running, etc.

CSE 250 Fall 2024

There is a gray area when it comes to discussing the problems with your peers and I do
encourage you to work with one another to solve problems. That is the best way to learn and
overcome obstacles. At the same time you need to be sure you do not overstep and not
plagiarize. Talking out how you eventually reached the solution from a high level is okay:

"I used a stack to store the data and then looked for the value to return."

but explaining every step in detail/pseudocode is not okay:

"I copied the file tutorial into my code at the start of the function, then created a stack
and pushed all of the data onto the stack, and finished by popping the elements until the
value is found and use a return statement."

The first example is OK but the second is basically a summary of your code and is not
acceptable, and remember that you shouldn’t be showing any code at all for how to do any of it.
Regardless of where you are working, you must always follow this rule: Never come away from
discussions with your peers with any written work, either typed or photographed, and especially
do not share or allow viewing of your written code.

What Resources are Allowed?
With all of this said, please feel free to use any [files|examples|tutorials] that we provide directly
in your code (with proper attribution). Feel free to directly use anything from lectures or
recitations. You will never be penalized for doing so, but should always provide
attribution/citation for where you retrieved code from. Just remember, if you are citing an
algorithm that is not provided by us, then you are probably overstepping.

More explicitly, you may use any of the following resources (with proper citation/attribution):
● Any example files posted on the course webpage (from lecture or recitation).
● Any code that the instructor provides.
● Any code that the TAs provide.
● Any code from the Java API (https://docs.oracle.com/javase/8/docs/api/)

Omitting citation/attribution will result in an AI violation (and lawsuits later in life at your
job). This is true even if you are using resources provided.

Amnesty Policy
We understand that students are under a lot of pressure and people make mistakes. If you have
concerns that you may have violated academic integrity on a particular assignment, and would
like to withdraw the assignment, you may do so by sending us an email BEFORE THE
VIOLATION IS DISCOVERED BY ME. The email should take the following format:

CSE 250 Fall 2024

Dear Dr. Mikida and Dr. Kennedy,

I wish to inform you that on assignment X, the work I submitted was not entirely my own. I would
like to withdraw my submission from consideration to preserve academic integrity.

J.Q. Student
Person #12345678
UBIT: jqstuden

When we receive this email, student J would receive a 0 on assignment X, but would not
receive an F for the course, and would not be reported to the office of academic integrity.

