
CSE250: Data Structures - Fall 2024 Written Assignment #3

0 Overview

Instructions

Due Date: Sunday, Oct 13 @ 11:59PM

Total points: 50

Your written solution may be either handwritten and scanned, or typeset. Either way, you
must produce a PDF that is legible and displays reasonably on a typical PDF reader. This
PDF should be submitted via autolab as WA3. You should view your submission after you
upload it to make sure that it is not corrupted or malformed. Submissions that are rotated,
upside down, or that do not load will not receive credit. Illegible submissions may also lose
credit depending on what can be read. Ensure that your final submission contains all pages.

You are responsible for making sure your submission went through successfully.

Written submissions may be turned in up to one day late for a 50% penalty.

No grace day usage is allowed.

1



CSE250: Data Structures - Fall 2024 Written Assignment #3

1 Proof by Induction

In this written assignment, you will use induction to prove the runtime of the standard
Towers of Hanoi algorithm.

In the towers of Hanoi, you are given 3 stacks of blocks. The blocks must be kept in order
within a given stack (largest at the bottom, smallest at the top), but may be spread out
across the three stacks however you like. You are allowed to move one block at a time, and
may never place a bigger block on a smaller block. The algorithm below takes the three
stacks (labeled, from, to, and spare) and moves the topmost N blocks from the from stack,
to the to stack. The spare stack is used as temporary storage. If the to and spare stack
are empty (or their smallest block is larger than the Nth smallest from block), the algorithm
is guaranteed to never put a larger block on a smaller one1

1 public int moveBlocks <T>(int N, Stack <T> from ,
2 Stack <T> to, Stack <T> spare) {
3 if(N <= 1){
4 // Move the block from [from], to [to]
5 T block = stacks[from].pop();
6 stacks[to].push(block);
7 } else {
8 // Move N-1 blocks from [from], to [spare]
9 moveBlocks(N-1, from , spare , to);

10 // Move the last block from [from], to [to]
11 T block = stacks[from].pop
12 stacks[to].push(block);
13 // Move N-1 blocks from [spare] to [to]
14 moveBlocks(N-1, spare , to, from);
15 }
16 }

Question 1 (20 pt): Setup and Hypothesis

Before we prove anything about the runtime of the code above, we have to determine what
the code’s runtime growth function is, and come up with a hypothesis for its runtime bounds.
For the runtime, you can ignore the from, to, and spare parameters. Assume that Stack
pushes and pops are always O(1) (e.g., the stack is backed by a Linked List).

• (10 pt) Write out the recursive form of the growth function, T (n) for moveBlocks(n).
1The details of this guarantee are not immediately relevant, but if curious, stop by office hours and ask.

2



CSE250: Data Structures - Fall 2024 Written Assignment #3

• (5 pt) Draw the recursion tree for moveBlocks. Label each node with the runtime
of a call to moveBlocks, excluding the cost of recursive calls. Label the height of your
tree in terms of n.

• (5 pt) Based on your recursion tree, give a hypothesis for the closed-form, tight upper
bound of your growth function (i.e., a hypothesis of the form T (n) = O(f(n))). In
at most two sentences, explain how you used your recursion tree to come up with the
hypothesis.

Question 2 (10 pt): Base Case

Prove that your hypothesis holds true for an appropriate number of base cases. Make sure
to consider how many base cases you will need to prove, based on your growth function.

Question 3 (20 pt): Inductive Case

In order to prove that our hypothesis is true for all values of n, we must use induction.
Remember that this involves showing how to prove the hypothesis for a specific value of n
by ‘chaining’ a proof from a smaller value of f(n).

• (5 pt) Make an appropriate inductive assumption (i.e., to prove the hypothesis for a
specific value n, what f(n) do you plan to chain a proof from).

• (15 pt) Prove that if your inductive assumption is true, then your hypothesis must
be true for T (n) (i.e., show how to chain a proof for T (f(n)) to T (n)).

3


