CSE 250: Java Refresher

CSE 250: Java Refresher

Lecture 2

Aug 28, 2024

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

L Class Logistics

Reminders

m Al Quiz due Sun, Sept 8 at 11:59 PM.
m Your final submission must have a score of 1.0 to pass the
class.
m If you can’t submit in autolab, let course staff know ASAP.

m PA 0 due Sun, Sept 8 at 11:59 PM.

m All you need to do is make sure you have a working
environment.
m If you can’t submit in autolab, let course staff know ASAP.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

L Class Logistics

Environment

Programming Environment
m IntelliJ

Platform
m MacOS
m Windows

m Ubuntu Linux

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

L Class Logistics

Environment

Programming Environment
m IntelliJ

Platform
m MacQOS
m Windows
m Ubuntu Linux

You don’t have to use this environment, but we may not be able to help
you if you don’t.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

LJava

Why Java?

m Strongly Typed Language: The compiler helps you make
sure you mean what you say.

m Compiled Language: Run anywhere, see the impacts of data
layout.

m You know it: You learned the basics in 116.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher

LJava

L Hello World

Hello World

© 00 N O O W N =

e =
w N = O

package cse250.examples;

class MainExample

{
/% x
* Main function
* @param args The arguments to main
*/

public static void main(String[] args)
{
System.out.println("Hello World");
}
}

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Here's a simple hello world in Java. Let's go through the parts, starting from the main function. par Instead of 'running' a java program, you 'run' a class. The static main function defined in the class is what runs; it's the 'entrypoint'.

CSE 250: Java Refresher
L Java

L Hello World

1’ public static void main(String[] args) ‘

m String args/[]

There is a parameter args and its type is array of String.
m public

The function can be called by anyone.
m static

The function isn't tied to an object (e.g.,
MainExample.main(...)).

m void
The function doesn't return anything.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Let's review the parts of the main method. - The method is called 'main', and the thing after it is the parameter list. - The first parameter is 'args' (this is the usual first argument for 'main'; it's a list of arguments that come from the command line when you run this class). - The 'String[]' bit is a type. It tells the system that 'args' should be an array of strings (Putting [] after a type like 'string' means 'array of' the type). - The 'public' and 'static' keywords control how the function is called. 'public' means that it can be called from any other file (class), and 'static' means that the function is called without an associated object (the 'main' function must be public static). - Right before the method is the 'type' of the method's return value. 'void' means that the function returns nothing.

CSE 250: Java Refresher

LJava
L Hello World

1 System.out.println("Hello World");

System refers to java.lang.System.

System.out is the out field of System.
System.out.println prints a line of text.

Semicolons (;) are mandatory.

© 2024 Oliver Kennedy, Eric Mikida, The Universi

 There's one line of code in the function. - 'System' refers to the class 'System' in the 'java.lang' 'package' (packages are how you organize your code). - 'System.out' is the (static) 'out' field of the 'System' class. - 'System.out.println()' is the usual way to print text in java. - Don't forget semicolons.

CSE 250: Java Refresher
L Java

L Hello World

1 /% x

2 * Main function

3 * @param args The arguments to main
4 */

Javadoc comments start with /*x*.

©2024 Oliv

 Javadoc comments are a way to provide additional information about how your methods, variables, and classes are used. par In particular, editors like IntelliJ will track these comments and use them when you mouse-over relevant parts of your code, so they're super useful

CSE 250: Java Refresher
L Java

L Hello World

package cse250.examples;

class MainExample

{

U s W N =

m All code in java lives in a class.

m Classes are organized into packages.

© 2024 Oliver Kennedy, Eric Mikida, The Universi

 Point to emphasize here: For the purposes of this class, this is mostly boilerplate. Class structures/templates will generally be provided.

CSE 250: Java Refresher

LJava

LE><ceptions

Exceptions
1 public List<String> loadData(String filename)
2| A
3 List<String> ret = new ArrayList<String>();
4 BufferedReader input =
5 new BufferedReader (new FileReader(filename));
6 String line;
7 while((line = input.readLine) != null)
8 {
9 ret.add(line)
10 }
11 return ret;
12 }

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Here's a block of code. It opens up a file, creates an ArrayList structure, and reads the files into it line by line. par Let's say you try to compile this function... the java compiler will yell at you. Why?

CSE 250: Java Refresher

LJava

LE><ceptions

Exceptions
1 public List<String> loadData(String filename)
2| A
3 List<String> ret = new ArrayList<String>();
4 BufferedReader input =
5 new BufferedReader (new FileReader(filename));
6 String line;
7 while((line = input.readLine) != null)
8 {
9 ret.add(line)
10 }
11 return ret;
12 }

error: unreported exception IOException; must be caught
or declared to be thrown

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Here's a block of code. It opens up a file, creates an ArrayList structure, and reads the files into it line by line. par Let's say you try to compile this function... the java compiler will yell at you. Why?

CSE 250: Java Refresher
LJava

LE><ceptions

What are Exceptions

Something goes horribly wrong!

What do you do?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 An exception is 'thrown' when something goes wrong. For example: - The file you wanted to open isn't there. - Someone deleted the file as you were reading from it. - A mammoth is currently chewing on your hard drive cables. par Java wants to make sure that one of two things happens: - You write code to gracefully handle the case (e.g., deploy the mammoth squirt gun) - You make it someone else's problem.

CSE 250: Java Refresher

LJava

LE><ceptions

Catching Exceptions

© 00 N O O W N =

e e e e =
N O ks W N = O

public List<String> loadData(String filename)
{
List<String> ret = new ArrayList<String>();
try {
BufferedReader input =
new BufferedReader(new FileReader (filename));
String line;
while((line = input.readLine) != null)
{
ret.add(line)
}
} catch(IOException e) {
// handle the situation: e.g., print an error
e.printStackTrace()
}
return ret;

}

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For example, if the file doesn't exist, say we're ok with just returning an empty array? par 'try' and 'catch' handle this. Write code that can throw an exception in the try block, and then write code to gracefully recover from the problem in the catch block. You can chain multiple catch blocks if you want to handle different types of exceptions. par the exception object can be helpful, for example you can use it to print a stack trace to see exactly where the problem occurred.

CSE 250: Java Refresher

LJava

LE><ceptions

Passing Along Exceptions

© 00 N O O W N =

e =
w N = O

public List<String> loadData(String filename)
throws IOException // Communicate the explosive potential
{
List<String> ret = new ArrayList<String>();
BufferedReader input =
new BufferedReader(new FileReader (filename));
String line;

while((line = input.readLine) != null)
{

ret.add(line)
}

return ret;

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 The other way is to let the caller handle it. Java wants you to make sure that the caller knows what could go wrong, so you have to add a 'throws' clause to the method declaration. There can be multiple exception types here, separated by commas. Then the caller gets to make the same choice.

CSE 250: Java Refresher
LJava
L Coding Style

Coding Style is Important

1 class SHAZboT

2 {
3 public static void

4 doThings (String ILikeLlamas[])
5 {

6 String AString = "No";

7

8 // This is a for loop

9 for(q : ILikeLlamas) System.out.println(q);
10 }

11 }

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 yeeeeah... just don't write code like this.

CSE 250: Java Refresher
LJava
L Coding Style

Coding Style is Important

1 class SHAZboT

2 {
3 public static void

4 doThings (String ILikeLlamas[])
5 {

6 String AString = "No";

7

8 // This is a for loop

9 for(q : ILikeLlamas) System.out.println(q);
10 }

11 }

What the heck is going on here? J

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 yeeeeah... just don't write code like this.

CSE 250: Java Refresher
LJava
L Coding Style

Naming

m SHAZboT
m doThings
m AString
m ILikelLlamas

These are all valid variable names, but not helpful to someone
reading your code.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 In particular emphasize that names based on the type (e.g., `AString`) are not useful.

CSE 250: Java Refresher
LJava
L Coding Style

Naming

m SHAZboT
m doThings
m AString
m ILikelLlamas

These are all valid variable names, but not helpful to someone
reading your code.

Use variable names that summarize the variable’s role or contents:
m nextNode: A pointer to the next node in a linked list
m data: The contents of an ArrayList
m leftChild: A pointer to the left child of a BST

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 In particular emphasize that names based on the type (e.g., `AString`) are not useful.

CSE 250: Java Refresher
LJava
L Coding Style

Indentation
1 class SHAZboT
21 A
3 public static void doThings(String ILikeLlamas[])
4 {
5 String AString = "No";
6
7 // This is a for loop
8 for(q : ILikeLlamas) System.out.println(q);
9 3
| }

Consistent use of indentation is a big help to readers.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LJava
L Coding Style

Comments

1’ // This s a for loop

Comments should provide information that's not already present in
the code. For example:

m Assumptions you're making when writing the code.

m References to relevant documentation/citations.

m Cleaner descriptions of any non-obvious math.

m Explanations of hacks or workarounds; why you're not doing
things the “obvious” way.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LJava
L Coding Style

Brackets

1’ for(q : ILikeLlamas) System.out.println(q);

VS

1 for(q : ILikeLlamas)

2| o

3 System.out.println(q);
4| ¥

Java supports one-line for loops. This is one of the easiest ways to
introduce bugs.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 It is **really** easy to make a change to the code without realizing that you're deleting the one line of a one line for loop or if statement. Don't do it.

CSE 250: Java Refresher
LJava
L Coding Style

Brackets

1’ for(q : ILikeLlamas) System.out.println(q);

VS

1 for(q : ILikeLlamas)

2| o

3 System.out.println(q);
4| ¥

Java supports one-line for loops. This is one of the easiest ways to
introduce bugs.

Always use braces. J

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 It is **really** easy to make a change to the code without realizing that you're deleting the one line of a one line for loop or if statement. Don't do it.

CSE 250: Java Refresher
L Java

L Coding Style

Imagine you're writing a letter to future-you

© 2024 Oliver Kennedy, Eric Mikida, The University

 Really emphasize this point... readable code is maintainable code. - It's easier to get help if your code is readable - Future you will appreciate you learning this skill now

CSE 250: Java Refresher
L Java

LCocling Style

Imagine you're writing a letter to future-you

Help future-you (and your TAs/instructors) understand your thought
process.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Really emphasize this point... readable code is maintainable code. - It's easier to get help if your code is readable - Future you will appreciate you learning this skill now

CSE 250: Java Refresher
LStrategies

Ways to Succeed

m Never start with code.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Succeed

m Never start with code.
m What do you have? How is it initially organized?

m Draw diagrams
m Try out examples

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Succeed

m Never start with code.
m What do you have? How is it initially organized?

m Draw diagrams
m Try out examples

m What do you want? How should it be structured?

m Draw diagrams
m Try out examples

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Succeed

m Never start with code.
m What do you have? How is it initially organized?

m Draw diagrams
m Try out examples

m What do you want? How should it be structured?

m Draw diagrams
m Try out examples

m How do the input and output relate?
m Connect the diagrams.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Succeed

m Never start with code.
m What do you have? How is it initially organized?

m Draw diagrams
m Try out examples

m What do you want? How should it be structured?

m Draw diagrams
m Try out examples

m How do the input and output relate?
m Connect the diagrams.
m Break the big problem down into smaller ones.

m If | had "X", | could solve the problem.
m Separately figure out how to do X.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Obtain Assistance

m Explain what you've tried.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Obtain Assistance

m Explain what you've tried.

m Which test cases fail?
m What approaches have you tried and what breaks?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Obtain Assistance

m Explain what you've tried.

m Which test cases fail?
m What approaches have you tried and what breaks?

m Explain what you're trying to accomplish and why.
m Make sure your interlocutor has all the context.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Ways to Obtain Assistance

m Explain what you've tried.

m Which test cases fail?
m What approaches have you tried and what breaks?

m Explain what you're trying to accomplish and why.
m Make sure your interlocutor has all the context.

m Follow coding style guidelines.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

If you don’t feel comfortable with Java

If you bring us (mostly working) pseudocode, course staff will help
you translate it to Java.

Typical questions:

m Syntax (e.g., "How do | break out of a for loop?”)
Ask on Piazza, Office Hours, Recitations!

m Semantics (e.g., "How do | insert an item into a linked list?")
Ask, but help will usually not come in the form of code.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

If you don’t feel comfortable with Java

If you bring us (mostly working) pseudocode, course staff will help
you translate it to Java.

Typical questions:
m Syntax (e.g., "How do | break out of a for loop?”)
Ask on Piazza, Office Hours, Recitations!

m Semantics (e.g., "How do | insert an item into a linked list?")
Ask, but help will usually not come in the form of code.

Most language (syntax) complaints we get are actually about
semantics.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Basic Debugging

Demo

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 See `Examples/debugging`. Fix the first two bugs.

CSE 250: Java Refresher
LStrategies

Unit Testing

Look for this phrase
[part of code] should [do a thing]

Any phrase like this can become a unit test.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

Unit Testing

Look for this phrase
[part of code] should [do a thing]

Any phrase like this can become a unit test.

A typical unit test
m Set up a minimal input.
m Invoke the code being tested.

m Test the output/program state.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies
L Junit

JUnit

1 package cse250.examples.debugging;

2

3 import org.junit.jupiter.api.Test;

4

5| public class BreakItDownTest {

6 ArrayList<FarmersMarket> data =

7 BreakItDown.readMarkets(/*...%*/);
8

9 QTest

10 void shouldCount75BakedGoods ()

11 throws IOException

12 {

13 int count = BreakItDown.countTheBakedGoods(data);
14 assert (count == 75);

15 }

16 T

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies

L Junit

public class BreakItDownTest {
ArrayList<FarmersMarket> data =
BreakItDown.readMarkets(/*...%/);

VL V4
}

G s W N =

Test cases are normal class files.

Usually, they live in a separate directory (test instead of src).

© 2024 Oliver Kennedy, Eric Mikida, The Universi

CSE 250: Java Refresher

LStrategies
L junit
1 Q@Test
2 void shouldCount75BakedGoods ()
3 throws IOException

A test case is any function labeled with the @Test annotation.
m The name of the function does not matter
m The return value should be void

m The function may throw exceptions.

© 2024 Oliver Kennedy, Eric Mikida, The Universi

CSE 250: Java Refresher

LStrategies
L junit

assert (count == 75); ‘

The test case should run the code you want to test, and then call
assert to confirm that the outputs are correct.

In this case, we already know that there are 75 farmers markets
that sell baked goods, so we can check whether the code computes
the right value.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Java Refresher
LStrategies
L Junit

Debugging with JUnit

Demo

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 See `Examples/debugging`. Fix the next two bugs.

	Class Logistics
	Java
	Hello World
	Exceptions
	Coding Style

	Strategies
	JUnit

