
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 04: Intro to Complexity

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Normal recitations (w/attendance) begin next week
● Academic Integrity Quiz due 9/8 @ 11:59PM (MUST GET 100%)
● PA0 due 9/8 @ 11:59PM (MUST GET 100%)

○ See @38 on Piazza if you ran into server errors
● WA1 due 9/8 @ 11:59PM

2

Thought Experiment

An Abstract Data Type is a specification of what a data structure can do

ADT

prepend

get first

get nth

Thought Experiment

Often, many data structures can satisfy a given ADT…how do you choose?

ADT

prepend

get first

get nth

Thought Experiment

Data Structure 1
● Very fast prepend, get first
● Very slow get nth

Data Structure 2
● Very fast get nth, get first
● Very slow prepend

Data Structure 3
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

Thought Experiment

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (Array)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

IT DEPENDS!

A (very) Brief Refresher: Array

● An array is an ordered container (elements stored one after another)
● Array elements are all stored in a contiguous block of memory

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …

A (very) Brief Refresher: Linked Lists

HEAD

NoneA B C

● Also an ordered container
● Each element stores a pointer to the next element

○ …not necessarily in a contiguous block of memory

8

A (very) Brief Refresher: Linked Lists

HEAD

None

A B

CG

I

J

E

K

DH

F

L

● Can also be doubly linked (a next AND a prev pointer per node)
● PA1 will have you implementing a Sorted Doubly Linked List with

some minor twists

A (very) Brief Refresher: Linked Lists

HEAD

A CB

10

None

TAIL

Thought Experiment

What is "fast"? "slow"?

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (ArrayList)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

12

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 13

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”

14

Let’s do a quick demo…

15

Comparing Random Access for Array vs List

Array List

16

Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…

17

Comparing Random Access for Array vs List

Array List

18

Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they
scale with input size (the shape of the function)

19

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

20

Counting Steps

21

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

Counting Steps

22

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

How many steps does this function take?

Counting Steps

23

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

7 steps…ish? Maybe? What the heck is a step?

Counting Steps

24

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

25

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

26

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

27

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

28

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

29

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

30

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

31

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

32

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

33

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Counting Steps

34

1

2

3

4

5

6

7

8

9

10

public void totalReads(User[] users, Post[] posts) {

 int totalReads = 0;

 for(Post post : posts) {

 int userReads = 0;

 for(User user : users) {

 if(user.readPost(post)){ userReads += 1; }

 }

 totalReads += userReads;

 }

}

Steps to "Functions"

Now that we have number of steps* in terms of summations…

…which we can simplify (like in WA1) into mathematical functions…

We can start analyzing runtime as a function

* we'll give a better definition of what a "step" is later

35

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps? 36

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

37

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

NO!

38

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2
39

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

40

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

41

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over
here

42

Goal: Ignore implementation details

Seasoned Pro Implementation Error 23: Cat on Keyboard

vs

43

Goal: Ignore execution environment

vs

Intel i9
Images from openclipart.org, used with permission

Motorola 68000
44

Goal: Judge the Algorithm Itself

● How fast is a step? Don’t care
○ Only count number of steps

● Can this be done in two steps instead of one?
○ “3 steps per user” vs “some number of steps per user”
○ Sometimes we don’t care…sometimes we do

45

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

46

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

○ Asymptotic notation…?

47

