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Announcements and Feedback

● Normal recitations (w/attendance) begin next week
● Academic Integrity Quiz due 9/8 @ 11:59PM (MUST GET 100%)
● PA0 due 9/8 @ 11:59PM (MUST GET 100%)

○ See @38 on Piazza if you ran into server errors
● WA1 due 9/8 @ 11:59PM
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Thought Experiment

An Abstract Data Type is a specification of what a data structure can do

ADT

prepend

get first

get nth



Thought Experiment

Often, many data structures can satisfy a given ADT…how do you choose?

ADT

prepend

get first

get nth



Thought Experiment

Data Structure 1
● Very fast prepend, get first
● Very slow get nth

Data Structure 2
● Very fast get nth, get first
● Very slow prepend

Data Structure 3
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?



Thought Experiment

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (Array)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

IT DEPENDS!



A (very) Brief Refresher: Array

● An array is an ordered container (elements stored one after another)
● Array elements are all stored in a contiguous block of memory

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …



A (very) Brief Refresher: Linked Lists

HEAD

NoneA B C

● Also an ordered container
● Each element stores a pointer to the next element

○ …not necessarily in a contiguous block of memory
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A (very) Brief Refresher: Linked Lists
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● Can also be doubly linked (a next AND a prev pointer per node)
● PA1 will have you implementing a Sorted Doubly Linked List with 

some minor twists

A (very) Brief Refresher: Linked Lists

HEAD

A CB
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Thought Experiment

What is "fast"? "slow"?

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (ArrayList)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend



Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest 

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…
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Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest 

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 13



Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
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Let’s do a quick demo…
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Comparing Random Access for Array vs List

Array List
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Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…
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Comparing Random Access for Array vs List

Array List
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Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they 
scale with input size (the shape of the function)
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Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
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Counting Steps
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public void userFullName(User[] users, int id) {

  User user = users[id];

  String fullName = user.firstName + user.lastName;

  return fullName;

}



Counting Steps
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public void userFullName(User[] users, int id) {

  User user = users[id];

  String fullName = user.firstName + user.lastName;

  return fullName;

}

How many steps does this function take?



Counting Steps
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public void userFullName(User[] users, int id) {

  User user = users[id];

  String fullName = user.firstName + user.lastName;

  return fullName;

}

7 steps…ish? Maybe? What the heck is a step?



Counting Steps
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public void updateUsers(User[] users) {

  x = 1;

  for(user : users) {

    user.id = x;

    x = x + 1;

  }

}
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Counting Steps
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    user.id = x;

    x = x + 1;

  }

}



Counting Steps
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Counting Steps
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Counting Steps
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public void totalReads(User[] users, Post[] posts) {

  int totalReads = 0;

  for(Post post : posts) {

    int userReads = 0;

    for(User user : users) {

      if(user.readPost(post)){ userReads += 1; }

    }

    totalReads += userReads;

  }

}
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Counting Steps
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Steps to "Functions"

Now that we have number of steps* in terms of summations…

…which we can simplify (like in WA1) into mathematical functions…

We can start analyzing runtime as a function

* we'll give a better definition of what a "step" is later
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Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps? 36



Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…
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Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

NO!
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Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2
39



Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
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Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
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Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over 
here
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Goal: Ignore implementation details

Seasoned Pro Implementation Error 23: Cat on Keyboard

vs
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Goal: Ignore execution environment

vs

Intel i9
Images from openclipart.org, used with permission

Motorola 68000
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Goal: Judge the Algorithm Itself

● How fast is a step? Don’t care
○ Only count number of steps

● Can this be done in two steps instead of one?
○ “3 steps per user” vs “some number of steps per user”
○ Sometimes we don’t care…sometimes we do
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Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
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Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

○ Asymptotic notation…?
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