CSE 250: Asymptotic Analysis Lecture 4

September 4, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Reminders

- Al Quiz due Sun, Sept 8 at 11:59 PM.
 - Your final submission must have a score of 1.0 to pass the class.
 - If you can't submit in autolab, let course staff know ASAP.
- PA0 due Sun, Sept 8 at 11:59 PM.
 - All you need to do is make sure you have a working environment.
 - If you can't submit in autolab, let course staff know ASAP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- WA1 due Sun, Sept 8 at 11:59 PM.
 - Summations, Limits, Exponentials; Friday's Lecture

How "Fast" is an Algorithm?

How "fast" is an algorithm?

Runtime

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Runtime

・ロト・西ト・山田・山田・山口・

Runtime

Number of Training Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Runtime

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Runtime

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Runtime

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Runtime

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Implementation Variation

- How much data does it process?
- What hardware is it running on?
- How cleverly has the implementation been optimized?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Implementation Variation

- How much data does it process?
- What hardware is it running on?
- How cleverly has the implementation been optimized?

These are all (brittle) low-level details.

The Big Picture

©Earthstar Geographics SIO; via Bing Maps

(日) (四) (王) (日) (日)

Runtime

Scaling

Idea

Identify algorithms by their ???

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling

Idea

Identify algorithms by their "shape"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling

Idea

Identify algorithms by their "Complexity Class"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaling

Idea

Identify algorithms by their "Complexity Class"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Quadratic is generally worse than linear.

- Algorithm 1 is quadratic
- Algorithm 3 is linear

Scaling

Idea

Identify algorithms by their "Complexity Class"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Quadratic is generally worse than linear.

- Algorithm 1 is quadratic
- Algorithm 3 is linear

Some Notation

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- *N*: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary

- N: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary
- *T*(*N*): The runtime of 'some' implementation of the algorithm.

- N: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary
- *T*(*N*): The runtime of 'some' implementation of the algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some... correct implementation.

- N: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary
- T(N): The runtime of 'some' implementation of the algorithm.

Some... correct implementation.

We care about the "shape" of T(N) when you plot it.

Thinking in Steps

Instead of runtime, let's count the 'steps'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Count the Steps

```
public void updateUsers(User[] users)
1
\mathbf{2}
     ł
       x = 1;
3
       for(user : users)
4
       ł
5
          user.id = x;
6
        }
7
     }
8
```

Count the Steps

```
public void updateUsers(User[] users)
1
\mathbf{2}
     ł
       x = 1; ←
3
       for(user : users)
4
        ł
5
          user.id = x;
6
        }
\overline{7}
     }
8
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1

Count the Steps

```
public void updateUsers(User[] users)
1
\mathbf{2}
    ł
      x = 1:
3
      4
      ł
5
        user.id = x;
6
      }
\overline{7}
    }
8
```


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Count the Steps

```
public void updateUsers(User[] users)
1
\mathbf{2}
      ł
        x = 1;
3
        for(user : users) 
4
        ł
5
           user.id = x; \leftarrow
6
        }
\overline{7}
      }
8
```

$$1 + \sum_{\mathtt{user} \in \mathtt{users}} 2 \; \mathtt{steps}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Count the Steps

```
public void updateUsers(User[] users)
1
\mathbf{2}
     ł
       x = 1;
3
       for(user : users)
4
       ł
5
         user.id = x;
6
       }
7
     }
8
```

$$1 + \sum_{\texttt{user} \in \texttt{users}} 2 \; \texttt{steps} \; = 1 + 2 \times |\texttt{users}|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... where |users| means the size of the users array.

Count the Steps

```
public void userFullName(User[] users, int id)
{
   User user = users[id];
   String fullName = user.firstName + user.lastName;
   return fullName;
}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Count the Steps

3 steps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Count the Steps

```
1 public void userFullName(User[] users, int id)
2 {
3 User user = users[id];
4 String fullName = user.firstName + user.lastName;
5 return fullName;
6 }
```

3 steps¹

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

¹This is actually a lie, but more on that in later lectures

Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
       int totalReads = 0;
3
       for(post : posts)
4
       ł
5
          int userReads = 0;
6
          for(user : users)
7
          Ł
8
            if(user.readPost(post)){ userReads += 1; }
9
          ን
10
          totalReads += userReads;
11
       }
12
     }
13
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
       int totalReads = 0; 
3
       for(post : posts)
4
       ł
5
          int userReads = 0;
6
         for(user : users)
7
          Ł
8
            if(user.readPost(post)){ userReads += 1; }
9
10
         totalReads += userReads;
11
       }
12
     }
13
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
       int totalReads = 0;
3
       4
       ł
5
         int userReads = 0;
6
         for(user : users)
7
         Ł
8
           if(user.readPost(post)){ userReads += 1; }
9
         ን
10
         totalReads += userReads;
11
       }
12
     }
13
```


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
      int totalReads = 0;
3
      4
      ł
5
         int userReads = 0; 
6
        for(user : users)
7
        ł
8
          if(user.readPost(post)){ userReads += 1; }
9
         }
10
        totalReads += userReads;
11
      }
12
     }
13
```


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
        int totalReads = 0;
3
        for(post : posts)
4
        ł
5
          int userReads = 0;
6
          for(user : users) \longleftarrow
7
          Ł
8
             if(user.readPost(post)){ userReads += 1; }
9
          ን
10
          totalReads += userReads;
11
        }
12
     }
13
```

$$1 + \sum_{\text{post} \in \text{posts}} \left(3 + \sum_{\text{user} \in \text{users}}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Count the Steps

```
public void totalReads(User[] users, Post[] posts)
1
\mathbf{2}
        int totalReads = 0;
3
        for(post : posts)
4
        ł
5
          int userReads = 0;
6
          for(user : users) \longleftarrow
7
          Ł
8
            if(user.readPost(post)){ userReads += 1; } 
9
          ን
10
          totalReads += userReads;
11
        }
12
     }
13
```

$$1 + \sum_{\text{post} \in \text{posts}} \left(3 + \sum_{\text{user} \in \text{users}} 2\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Comparing Step Counts

Which is better?

1 An algorithm that takes $5 + (|users| \times 3)$ steps

2 An algorithm that takes $\frac{1}{2}(|users|^2)$ steps

Comparing Step Counts

Which is better?

- **1** An algorithm that takes $5 + (|users| \times 3)$ steps
- **2** An algorithm that takes $\frac{1}{2}(|users|^2)$ steps

CSE 250: Asymptotic Analysis How "Fast" is an Algorithm?

Comparing Step Counts

Which is better?

- **1** An algorithm that takes $5 + (N \times 3)$ steps
- 2 An algorithm that takes $\frac{1}{2}(N^2)$ steps

CSE 250: Asymptotic Analysis How "Fast" is an Algorithm?

Comparing Step Counts

Which is better?

1
$$T_1(N) = 5 + (N \times 3)$$
 steps
2 $T_2(N) = \frac{1}{2}(N^2)$ steps

Comparing Step Counts

$T_1(N) \ll T_2(N)$ (for "big enough" N).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Comparing Step Counts

 $T_1(N) \ll T_2(N)$ (for "big enough" N).

So... to us an algorithm that takes $T_1(N)$ steps is better/faster/stronger than $T_2(N)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Which is better?

1
$$T_1(N) = 5 + (N \times 3)$$

2 $T_2(N) = 10 + (N \times 3)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Which is better?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$T_1(N)$ is within a constant <u>additive</u> factor of $T_2(N)$ (i.e., $T_1(N) = T_2(N) + c$)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$T_1(N)$$
 is within a constant additive factor of $T_2(N)$
(i.e., $T_1(N) = T_2(N) + c$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In This Class

 $T_1(N)$ and $T_2(N)$ are the same.

Multiplicative Factors

Which is better?

1
$$T_1(N) = 3 + (N \times 3)$$

2
$$T_2(N) = 4 + (N \times 4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multiplicative Factors

Which is better?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multiplicative Factors

$T_1(N)$ is within a constant <u>multiplicative</u> factor of $T_2(N)$ (i.e., $T_1(N) = c \times T_2(N)$)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Multiplicative Factors

$T_1(N)$ is within a constant <u>multiplicative</u> factor of $T_2(N)$ (i.e., $T_1(N) = c \times T_2(N)$)

In This Class

 $T_1(N)$ and $T_2(N)$ are the same.

If there's a c_1 and c_2 so that $T_1(N) = c_2 + (c_1 \times T_2(N))$ then we say that T_1 is in the same **complexity class** as $T_2(N)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

If there's a c_1 and c_2 so that $T_1(N) = c_2 + (c_1 \times T_2(N))$ then we say that T_1 is in the same **complexity class** as $T_2(N)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

²I'm lying to you again.

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

If there's a c_1 and c_2 so that $T_1(N) = c_2 + (c_1 \times T_2(N))$ then we say that T_1 is in the same **complexity class** as $T_2(N)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

²I'm lying to you again... slightly. More soon.

Growth Functions

"T(N) is an algorithm's runtime" means: On an input of size N the algorithm finishes in exactly T(N) steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Growth Functions

"T(N) is an algorithm's runtime" means: On an input of size N the algorithm finishes in exactly T(N) steps.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

What is a step?

Growth Functions

"T(N) is an algorithm's runtime" means: On an input of size N the algorithm finishes in exactly T(N) steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a step?

- An arithmetic operation
- Accessing a variable
- Printing a character

Growth Functions

"T(N) is an algorithm's runtime" means: On an input of size N the algorithm finishes in exactly T(N) steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a step?

- An arithmetic operation
- Accessing a variable
- Printing a character

But...

How many Steps?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How many Steps?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 and 2 are in the same complexity class (2 = 1 + 1).

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

How many Steps?

1
$$x = 10;$$

VS
1 $x = 10;$
2 $y = 20;$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

1 and 2 are in the same complexity class (2 = 1 + 1).

The exact number of steps doesn't matter.

Steps

A step is any computation that always has the same runtime.

(ロ)、(型)、(E)、(E)、 E) の(()

Steps

A step is any computation that always³ has the same runtime.

³Offer void where prohibited, some approximations may apply.

Growth Functions

We can make some assumptions about runtimes...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
 N ∈ Z⁺ ∪ {0} (N is a positive integer or 0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
 N ∈ Z⁺ ∪ {0} (N is a positive integer or 0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

■ Code never finishes before it starts.
 T(N) ≥ 0

Growth Functions

We can make some assumptions about runtimes...

- The size of an input is never negative. $N \in \mathbb{Z}^+ \cup \{0\}$ (*N* is a positive integer or 0)
- Code never finishes before it starts. $T(N) \ge 0$
- Code never runs faster on bigger inputs. if $N_1 \leq N_2$, then $T(N_1) \leq T(N_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Growth Functions

We can make some assumptions about runtimes...

- The size of an input is never negative. $N \in \mathbb{Z}^+ \cup \{0\}$ (*N* is a positive integer or 0)
- Code never finishes before it starts. $T(N) \ge 0$
- Code never runs faster on bigger inputs. if $N_1 \leq N_2$, then $T(N_1) \leq T(N_2)$
- We shouldn't allow fractional steps, but we want easy math. $T(N) \in \mathbb{R}^+ \cup \{0\} \ (T(N) \text{ is a non-negative real.})$

A D N A 目 N A E N A E N A B N A C N

Growth Functions

We can make some assumptions about runtimes...

- The size of an input is never negative. $N \in \mathbb{Z}^+ \cup \{0\}$ (*N* is a positive integer or 0)
- Code never finishes before it starts. $T(N) \ge 0$
- Code never runs faster on bigger inputs. if $N_1 \leq N_2$, then $T(N_1) \leq T(N_2)$
- We shouldn't allow fractional steps, but we want easy math. $T(N) \in \mathbb{R}^+ \cup \{0\} \ (T(N) \text{ is a non-negative real.})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We call any function \mathcal{T} with these properties a growth function.

When I say a **function**, I mean a mathematical expression like 1 + 2N (not a bit of code).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ
Shorthands

$\theta(f(N))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Shorthands

$\theta(f(N))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

(all the mathematical functions in f(N)'s complexity class)

Shorthands

$\theta(f(N))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

(all the mathematical functions in f(N)'s complexity class)

$$\theta(2 + (3 \times N)) = \{ \\ \bullet 5 + (10 \times N) \\ \bullet N \\ \bullet 2 \times N \\ \bullet \dots \\ \}$$

Shorthands

$\theta(f(N))$

(all the mathematical functions in f(N)'s complexity class)

$$\theta(2 + (3 \times N)) = \{ \\ \bullet 5 + (10 \times N) \\ \bullet N \\ \bullet 2 \times N \\ \bullet \dots \\ \}$$

 $g(N) \in heta(f(N))$ means g and f are in the same complexity class

Shorthands

■
$$g(N) = \theta(f(N))$$
:
Common shorthand for $g(N) \in \theta(f(N))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Shorthands

- $g(N) = \theta(f(N))$: Common shorthand for $g(N) \in \theta(f(N))$
- g(N) is in $\theta(f(N))$: Common shorthand for $g(N) \in \theta(f(N))$
- Algorithm Foo is in $\theta(f(N))$: Common shorthand for $T(N) \in \theta(f(N))$ where T(N) is the <u>runtime</u> of Foo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Class Names

- $\theta(1)$: Constant
- $\theta(\log(N))$: Logarithmic
- $\theta(N)$: Linear
- $\theta(N \log(N))$: Log-Linear
- $\theta(N^2)$: Quadratic
- $\theta(N^k)$ (for any $k \ge 1$): Polynomial

• $\theta(2^N)$: Exponential

Moving forward:

■ f(N), g(N), f₁(N), f₂(N), ...: Any mathematical function that's a growth function.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• T(N): The growth function for a <u>specific</u> algorithm

What class is $g(N) = N + N^2$ in?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

Combining Classes

For big N, $N + N^2$ looks a lot more like N^2 than N. But it's not a constant factor different.

$$N + N^2 \neq c_1 + N^2 \times c_2$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^2 + N \stackrel{?}{\leq} 2N^2$$

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^2 + N \stackrel{?}{\leq} 2N^2$$
$$N \stackrel{?}{\leq} N^2$$

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^2 + N \stackrel{?}{\leq} 2N^2$$
$$N \stackrel{?}{\leq} N^2$$
$$1 \leq N$$

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^{2} + N \stackrel{?}{\leq} 2N^{2}$$
$$N \stackrel{?}{\leq} N^{2}$$
$$1 \quad \leq N$$

$$N^2 + N \stackrel{?}{\geq} N^2$$

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^{2} + N \stackrel{?}{\leq} 2N^{2}$$
$$N \stackrel{?}{\leq} N^{2}$$
$$1 \leq N$$

$$\begin{array}{rcl} N^2 + N & \stackrel{?}{\geq} & N^2 \\ N & \geq & 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Combining Classes

 N^2 and $2N^2$ are in the same complexity class.

$$N^{2} + N \stackrel{?}{\leq} 2N^{2}$$
$$N \stackrel{?}{\leq} N^{2}$$
$$1 \leq N$$

$$\begin{array}{rcl} N^2 + N & \stackrel{?}{\geq} & N^2 \\ N & \geq & 0 \end{array}$$

$$N^2 \le N^2 + N \le 2N^2$$

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Complexity Bounds

$$N^2 \leq N^2 + N \leq 2N^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Complexity Bounds

$$N^2 \leq N^2 + N \leq 2N^2$$

 $N^2 + N$ should probably be in $\theta(N^2)$ too.

Complexity Bounds

f and g are in the same complexity class if:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexity Bounds

f and g are in the same complexity class if:

■ g is bounded from above by something f-shaped

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped
- g is bounded from below by something f-shaped

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity Bounds

- f and g are in the same complexity class if:
 - g is bounded from above by something f-shaped $g(N) \in O(f(N))$
 - g is bounded from below by something f-shaped

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで