
CSE 250: Asymptotic Analysis

CSE 250: Asymptotic Analysis
Lecture 4

September 4, 2024

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Class Logistics

Reminders

AI Quiz due Sun, Sept 8 at 11:59 PM.

Your final submission must have a score of 1.0 to pass the
class.
If you can’t submit in autolab, let course staff know ASAP.

PA0 due Sun, Sept 8 at 11:59 PM.

All you need to do is make sure you have a working
environment.
If you can’t submit in autolab, let course staff know ASAP.

WA1 due Sun, Sept 8 at 11:59 PM.

Summations, Limits, Exponentials; Friday’s Lecture

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

How ”fast” is an algorithm?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Pose the question: How do we measure an algorithm's "performance"? par Obvious answer: Implement it and run it - **Emph:** What kind of inputs? - How "big"? - How "complex"? - What about the hardware? (keyed on next slide) - Who implements it? You? Grace Hopper? My cat Serenity (Julie)?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
im

e
to

C
om

p
le
ti
on

(s
)

1

2

3

4

Alg. 1 Alg. 2

(on 100 training examples) (on 1 million training examples)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Say we've implemented two machine learning algorithms... we run each, and the first takes one second, and the second takes 4 seconds. Which is better? par Now what if I told you that this is how long it takes the algorithms to process one hundred, and one million training points? Which is better? par So... when we run the tests, let's maybe see what happens at different input sizes and plot the results.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
im

e
to

C
om

p
le
ti
on

(s
)

1

2

3

4

Alg. 1 Alg. 2
(on 100 training examples) (on 1 million training examples)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Say we've implemented two machine learning algorithms... we run each, and the first takes one second, and the second takes 4 seconds. Which is better? par Now what if I told you that this is how long it takes the algorithms to process one hundred, and one million training points? Which is better? par So... when we run the tests, let's maybe see what happens at different input sizes and plot the results.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, now I've got two new algorithms for machine learning... the number of examples is on the x axis, and the time it takes is on the y axis. par Let's try algorithm 1... and now algorithm 2. Which is better? par What if I tell you that Algorithm 2 is running on an iPhone made before most of you were born and the other one has all the resources of the cloud. Which is better now?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1

Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, now I've got two new algorithms for machine learning... the number of examples is on the x axis, and the time it takes is on the y axis. par Let's try algorithm 1... and now algorithm 2. Which is better? par What if I tell you that Algorithm 2 is running on an iPhone made before most of you were born and the other one has all the resources of the cloud. Which is better now?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, now I've got two new algorithms for machine learning... the number of examples is on the x axis, and the time it takes is on the y axis. par Let's try algorithm 1... and now algorithm 2. Which is better? par What if I tell you that Algorithm 2 is running on an iPhone made before most of you were born and the other one has all the resources of the cloud. Which is better now?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, now I've got two new algorithms for machine learning... the number of examples is on the x axis, and the time it takes is on the y axis. par Let's try algorithm 1... and now algorithm 2. Which is better? par What if I tell you that Algorithm 2 is running on an iPhone made before most of you were born and the other one has all the resources of the cloud. Which is better now?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Original iPhone

”The Cloud”

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, now I've got two new algorithms for machine learning... the number of examples is on the x axis, and the time it takes is on the y axis. par Let's try algorithm 1... and now algorithm 2. Which is better? par What if I tell you that Algorithm 2 is running on an iPhone made before most of you were born and the other one has all the resources of the cloud. Which is better now?

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Implementation Variation

How much data does it process?

What hardware is it running on?

How cleverly has the implementation been optimized?

These are all (brittle) low-level details.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 When comparing *implementations*, we need to take into account lots of things: input size, hardware, optimization nuances (e.g., did Grace Hopper have a crack at the code?) par These are all low-level details. I say they're brittle, because they combine in strange ways. - Implementation 1 might be fantastic... until you upgrade to the latest hardware. - Implementation 2 might be insanely slow... until you make one tweak (see lecture 1).

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Implementation Variation

How much data does it process?

What hardware is it running on?

How cleverly has the implementation been optimized?

These are all (brittle) low-level details.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 When comparing *implementations*, we need to take into account lots of things: input size, hardware, optimization nuances (e.g., did Grace Hopper have a crack at the code?) par These are all low-level details. I say they're brittle, because they combine in strange ways. - Implementation 1 might be fantastic... until you upgrade to the latest hardware. - Implementation 2 might be insanely slow... until you make one tweak (see lecture 1).

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

The Big Picture

©Earthstar Geographics SIO; via Bing Maps

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Remember, in lecture 1 we said that we were going to look for the 50k-ft view of the algorithm... independent of implementation details. par That's not to say that the implementation details aren't important... they are. But in *this class*, we're going to teach you how to step back and think about the big picture.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Runtime

T
ra
in
in
g
T
im

e
(s
)

Number of Training Examples

Alg. 1
Alg. 2

Alg. 3

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 [sing]One of these is not like the others par Q: Why are algorithms 1 and 2 the same, and what makes algorithm 3 different? par Both 1 and 2 is a quadratic equation, while 3 is linear. par After the number training examples gets big enough, algorithm 3 will *always* be faster.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ???

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 This is the 50k-ft view we were talking about. Instead of thinking about the *specific* runtime of the algorithm, let's think about the "shape" of the curve the algorithm makes as you plot it.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ”shape”

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 This is the 50k-ft view we were talking about. Instead of thinking about the *specific* runtime of the algorithm, let's think about the "shape" of the curve the algorithm makes as you plot it.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ”Complexity Class”

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 This is the 50k-ft view we were talking about. Instead of thinking about the *specific* runtime of the algorithm, let's think about the "shape" of the curve the algorithm makes as you plot it.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ”Complexity Class”

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 This is the 50k-ft view we were talking about. Instead of thinking about the *specific* runtime of the algorithm, let's think about the "shape" of the curve the algorithm makes as you plot it.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Scaling

Idea

Identify algorithms by their ”Complexity Class”

Quadratic is generally worse than linear.

Algorithm 1 is quadratic

Algorithm 3 is linear ✓

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 This is the 50k-ft view we were talking about. Instead of thinking about the *specific* runtime of the algorithm, let's think about the "shape" of the curve the algorithm makes as you plot it.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Some Notation

N: The input ”size”

How many students I have to email.
How many streets on a map.
How many key/value pairs in my dictionary

T (N): The runtime of ’some’ implementation of the
algorithm.

Some... correct implementation.

We care about the ”shape” of T (N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Thinking in Steps

Instead of runtime, let’s count the ’steps’

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1;

4 for(user : users)

5 {

6 user.id = x;

7 }

8 }

1 +
∑

user∈users
2 steps = 1 + 2× |users|

... where |users| means the size of the users array.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One step (x =1) - One 'check' for each user - One extra step (user.id = x) per user.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1; ←
4 for(user : users)

5 {

6 user.id = x;

7 }

8 }

1

+
∑

user∈users
2 steps = 1 + 2× |users|

... where |users| means the size of the users array.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One step (x =1) - One 'check' for each user - One extra step (user.id = x) per user.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1;

4 for(user : users) ←
5 {

6 user.id = x;

7 }

8 }

1 +
∑

user∈users

2 steps = 1 + 2× |users|

... where |users| means the size of the users array.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One step (x =1) - One 'check' for each user - One extra step (user.id = x) per user.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1;

4 for(user : users) ←
5 {

6 user.id = x;←
7 }

8 }

1 +
∑

user∈users
2 steps

= 1 + 2× |users|

... where |users| means the size of the users array.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One step (x =1) - One 'check' for each user - One extra step (user.id = x) per user.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void updateUsers(User[] users)

2 {

3 x = 1;

4 for(user : users)

5 {

6 user.id = x;

7 }

8 }

1 +
∑

user∈users
2 steps = 1 + 2× |users|

... where |users| means the size of the users array.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One step (x =1) - One 'check' for each user - One extra step (user.id = x) per user.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void userFullName(User[] users, int id)

2 {

3 User user = users[id];

4 String fullName = user.firstName + user.lastName;

5 return fullName;

6 }

3 steps

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Each line is one step.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void userFullName(User[] users, int id)

2 {

3 User user = users[id];

4 String fullName = user.firstName + user.lastName;

5 return fullName;

6 }

3 steps

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Each line is one step.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void userFullName(User[] users, int id)

2 {

3 User user = users[id];

4 String fullName = user.firstName + user.lastName;

5 return fullName;

6 }

3 steps1

1This is actually a lie, but more on that in later lectures
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Each line is one step.

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0;

4 for(post : posts)

5 {

6 int userReads = 0;

7 for(user : users)

8 {

9 if(user.readPost(post)){ userReads += 1; }

10 }

11 totalReads += userReads;

12 }

13 }

1 +
∑

post∈posts

(
3 +

∑
user∈users

2

)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0; ←
4 for(post : posts)

5 {

6 int userReads = 0;

7 for(user : users)

8 {

9 if(user.readPost(post)){ userReads += 1; }

10 }

11 totalReads += userReads;

12 }

13 }

1

+
∑

post∈posts

(
3 +

∑
user∈users

2

)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0;

4 for(post : posts) ←
5 {

6 int userReads = 0;

7 for(user : users)

8 {

9 if(user.readPost(post)){ userReads += 1; }

10 }

11 totalReads += userReads;

12 }

13 }

1 +
∑

post∈posts

(
3 +

∑
user∈users

2

)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0;

4 for(post : posts) ←
5 {

6 int userReads = 0; ←
7 for(user : users)

8 {

9 if(user.readPost(post)){ userReads += 1; }

10 }

11 totalReads += userReads;←
12 }

13 }

1 +
∑

post∈posts

(
3

+
∑

user∈users
2

)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0;

4 for(post : posts)

5 {

6 int userReads = 0;

7 for(user : users)←
8 {

9 if(user.readPost(post)){ userReads += 1; }

10 }

11 totalReads += userReads;

12 }

13 }

1 +
∑

post∈posts

(
3 +

∑
user∈users

2

)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Count the Steps

1 public void totalReads(User[] users, Post[] posts)

2 {

3 int totalReads = 0;

4 for(post : posts)

5 {

6 int userReads = 0;

7 for(user : users)←
8 {

9 if(user.readPost(post)){ userReads += 1; } ←
10 }

11 totalReads += userReads;

12 }

13 }

1 +
∑

post∈posts

(
3 +

∑
user∈users

2

)
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 - One upfront for totalReads - One per post for the for - One per post for userReads - One per post for updating totalReads - One per post per user for the for - One per post per user for the count

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

Which is better?

1 An algorithm that takes 5 + (|users| × 3) steps

2 An algorithm that takes 1
2(|users|

2) steps

S
te
p
s

Alg. 1

Alg. 2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

Which is better?

1 An algorithm that takes 5 + (|users| × 3) steps

2 An algorithm that takes 1
2(|users|

2) steps

S
te
p
s

|users|

Alg. 1

Alg. 2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

Which is better?

1 An algorithm that takes 5 + (N × 3) steps

2 An algorithm that takes 1
2(N

2) steps

S
te
p
s

N

Alg. 1

Alg. 2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

Which is better?

1 T1(N) = 5 + (N × 3) steps

2 T2(N) = 1
2(N

2) steps

S
te
p
s

N

T1(N)

T2(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

T1(N) ≪ T2(N) (for ”big enough” N).

So... to us an algorithm that takes T1(N) steps is
better/faster/stronger than T2(N).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

How ”Fast” is an Algorithm?

Comparing Step Counts

T1(N) ≪ T2(N) (for ”big enough” N).

So... to us an algorithm that takes T1(N) steps is
better/faster/stronger than T2(N).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

Which is better?

1 T1(N) = 5 + (N × 3)

2 T2(N) = 10 + (N × 3)

S
te
p
s

N

T1(N)

T2(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

Which is better?

1 T1(N) = 5 + (N × 3)

2 T2(N) = 10 + (N × 3)

S
te
p
s

N

T1(N)

T2(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

T1(N) is within a constant additive factor of T2(N)
(i.e., T1(N) = T2(N) + c)

In This Class

T1(N) and T2(N) are the same.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For the purposes of this class, we're going to ignore additive constant factors.

CSE 250: Asymptotic Analysis

Complexity Classes

Additive Factors

T1(N) is within a constant additive factor of T2(N)
(i.e., T1(N) = T2(N) + c)

In This Class

T1(N) and T2(N) are the same.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For the purposes of this class, we're going to ignore additive constant factors.

CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

Which is better?

1 T1(N) = 3 + (N × 3)

2 T2(N) = 4 + (N × 4)

S
te
p
s

N

T1(N)

T2(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

Which is better?

1 T1(N) = 3 + (N × 3)

2 T2(N) = 4 + (N × 4)

S
te
p
s

N

T1(N)

T2(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

T1(N) is within a constant multiplicative factor of T2(N)
(i.e., T1(N) = c × T2(N))

In This Class

T1(N) and T2(N) are the same.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For the purposes of this class, we're going to ignore multiplicative constant factors too.

CSE 250: Asymptotic Analysis

Complexity Classes

Multiplicative Factors

T1(N) is within a constant multiplicative factor of T2(N)
(i.e., T1(N) = c × T2(N))

In This Class

T1(N) and T2(N) are the same.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For the purposes of this class, we're going to ignore multiplicative constant factors too.

CSE 250: Asymptotic Analysis

Complexity Classes

Complexity

If there’s a c1 and c2 so that T1(N) = c2 + (c1 × T2(N)) then we
say that T1 is in the same complexity class as T2(N).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Complexity

If there’s a c1 and c2 so that T1(N) = c2 + (c1 × T2(N)) then we
say that T1 is in the same complexity class as T2(N)2.

2I’m lying to you again.
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Complexity

If there’s a c1 and c2 so that T1(N) = c2 + (c1 × T2(N)) then we
say that T1 is in the same complexity class as T2(N)2.

2I’m lying to you again... slightly. More soon.
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

”T (N) is an algorithm’s runtime” means:
On an input of size N the algorithm finishes in exactly T (N) steps.

What is a step?

An arithmetic operation

Accessing a variable

Printing a character

But...

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

”T (N) is an algorithm’s runtime” means:
On an input of size N the algorithm finishes in exactly T (N) steps.

What is a step?

An arithmetic operation

Accessing a variable

Printing a character

But...

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

”T (N) is an algorithm’s runtime” means:
On an input of size N the algorithm finishes in exactly T (N) steps.

What is a step?

An arithmetic operation

Accessing a variable

Printing a character

But...

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

”T (N) is an algorithm’s runtime” means:
On an input of size N the algorithm finishes in exactly T (N) steps.

What is a step?

An arithmetic operation

Accessing a variable

Printing a character

But...

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

How many Steps?

1 x = 10;

vs

1 x = 10;

2 y = 20;

1 and 2 are in the same complexity class (2 = 1 + 1).

The exact number of steps doesn’t matter.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

How many Steps?

1 x = 10;

vs

1 x = 10;

2 y = 20;

1 and 2 are in the same complexity class (2 = 1 + 1).

The exact number of steps doesn’t matter.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

How many Steps?

1 x = 10;

vs

1 x = 10;

2 y = 20;

1 and 2 are in the same complexity class (2 = 1 + 1).

The exact number of steps doesn’t matter.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Steps

A step is any computation that always has the same runtime.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Steps

A step is any computation that always3 has the same runtime.

3Offer void where prohibited, some approximations may apply.
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

We can make some assumptions about runtimes...

The size of an input is never negative.
N ∈ Z+ ∪ {0} (N is a positive integer or 0)

Code never finishes before it starts.
T (N) ≥ 0

Code never runs faster on bigger inputs.
if N1 ≤ N2, then T (N1) ≤ T (N2)

We shouldn’t allow fractional steps, but we want easy math.
T (N) ∈ R+ ∪ {0} (T (N) is a non-negative real.)

We call any function T with these properties a growth function.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Growth Functions

When I say a function, I mean a mathematical expression like
1 + 2N (not a bit of code).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

θ(f (N))

(all the mathematical functions in f (N)’s complexity class)

θ(2 + (3× N)) = {
5 + (10× N)

N

2× N

...

}

g(N) ∈ θ(f (N)) means g and f are in the same complexity class

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Literally, g is emph {in} the set of mathematical functions in the same complexity class as f

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

θ(f (N))

(all the mathematical functions in f (N)’s complexity class)

θ(2 + (3× N)) = {
5 + (10× N)

N

2× N

...

}

g(N) ∈ θ(f (N)) means g and f are in the same complexity class

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Literally, g is emph {in} the set of mathematical functions in the same complexity class as f

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

θ(f (N))

(all the mathematical functions in f (N)’s complexity class)

θ(2 + (3× N)) = {
5 + (10× N)

N

2× N

...

}

g(N) ∈ θ(f (N)) means g and f are in the same complexity class

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Literally, g is emph {in} the set of mathematical functions in the same complexity class as f

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

θ(f (N))

(all the mathematical functions in f (N)’s complexity class)

θ(2 + (3× N)) = {
5 + (10× N)

N

2× N

...

}

g(N) ∈ θ(f (N)) means g and f are in the same complexity class

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Literally, g is emph {in} the set of mathematical functions in the same complexity class as f

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

g(N) = θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

g(N) is in θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

Algorithm Foo is in θ(f (N)):
Common shorthand for T (N) ∈ θ(f (N)) where T (N) is the
runtime of Foo.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Shorthands

g(N) = θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

g(N) is in θ(f (N)):
Common shorthand for g(N) ∈ θ(f (N))

Algorithm Foo is in θ(f (N)):
Common shorthand for T (N) ∈ θ(f (N)) where T (N) is the
runtime of Foo.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Class Names

θ(1): Constant

θ(log(N)): Logarithmic

θ(N): Linear

θ(N log(N)): Log-Linear

θ(N2): Quadratic

θ(Nk) (for any k ≥ 1): Polynomial

θ(2N): Exponential

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 The classes are listed in order

CSE 250: Asymptotic Analysis

Complexity Classes

Moving forward:

f (N), g(N), f1(N), f2(N), . . . : Any mathematical function
that’s a growth function.

T (N): The growth function for a specific algorithm

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

What class is g(N) = N + N2 in?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

S
te
p
s

N

N

N2

N2 + N

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

For big N, N + N2 looks a lot more like N2 than N.
But it’s not a constant factor different.

N + N2 ̸= c1 + N2 × c2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Classes

Combining Classes

N2 and 2N2 are in the same complexity class.

N2 + N
?
≤ 2N2

N
?
≤ N2

1 ≤ N

N2 + N
?
≥ N2

N ≥ 0

N2 ≤ N2 + N ≤ 2N2
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

N2 ≤ N2 + N ≤ 2N2

N2 + N should probably be in θ(N2) too.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For a "big enough" N, our f is always smaller than one function in the complexity class, and always bigger than a different function in the same complexity class. We say it's "bounded" from above and below

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

N2 ≤ N2 + N ≤ 2N2

N2 + N should probably be in θ(N2) too.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 For a "big enough" N, our f is always smaller than one function in the complexity class, and always bigger than a different function in the same complexity class. We say it's "bounded" from above and below

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped

g is bounded from below by something f -shaped

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped

g is bounded from below by something f -shaped

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped

g is bounded from below by something f -shaped

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N))

g is bounded from below by something f -shaped

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Asymptotic Analysis

Complexity Bounds

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N))

g is bounded from below by something f -shaped
g(N) ∈ Ω(f (N))

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

	Class Logistics
	How "Fast" is an Algorithm?
	Complexity Classes
	Complexity Bounds

