
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 05: Asymptotic Analysis

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Normal recitations (w/attendance) begin next week
● Academic Integrity Quiz due 9/8 @ 11:59PM (MUST GET 100%)
● PA0 due 9/8 @ 11:59PM (MUST GET 100%)
● WA1 due 9/8 @ 11:59PM

2

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

3

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 4

Attempt #2: Growth Functions

Not a function in code…but a mathematical function:

T(n)

n: The “size” of the input

ie: number of users,rows, pixels, etc

T(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

5

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

6

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

7

T: {0} ∪ ℤ+ → ℝ+

T is non-decreasing

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

8

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

9

Does 1 extra step per
element really matter…?

Is this just an
implementation detail?

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

10

T1 and T2 are much
more “similar” to
each other than they
are to T3

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

11

T1 and T2 are much
more “similar” to
each other than they
are to T3 How do we capture

this idea formally?

How Do We Capture Behavior at Scale?

Consider the following two functions:

12

How Do We Capture Behavior at Scale?

13

How Do We Capture Behavior at Scale?

After this point,
these functions
behave the same
(they stay about
100x apart)

14

Attempt #3: Asymptotic Analysis

We want to organize runtimes (growth functions) into
different Complexity Classes

Within the same complexity class, runtimes “behave
the same”/"have the same shape" (at scale)

15

Getting More Formal

When do we consider two functions to have the same shape?

16

Additive
Factors
Consider two growth
functions:

T1(n) = 3n

T2(n) = 3n + 3

17

T1(n)

T2(n)

Additive
Factors
Consider two growth
functions:

T1(n) = 3n

T2(n) = 3n + 3

18

T1(n)

T2(n)

These functions still have the same
shape…the same complexity

Multiplicative
Factors
Consider two growth
functions:

T1(n) = 3n

T3(n) = 6n

19

T1(n)

T3(n)

Multiplicative
Factors
Consider two growth
functions:

T1(n) = 3n

T3(n) = 6n

20

T1(n)

T3(n)

These functions still have the same
shape…the same complexity

A Counter
Example
Now consider:

T4(n) = n2

21

T1(n)

T2(n)

T3(n)

T4(n)

A Counter
Example
Now consider:

T4(n) = n2

22

T1(n)

T2(n)

T3(n)

T4(n)

T4 is a distinctly different shape. Notice that
no matter what constant factors we add or
multiply by, T4 will always outgrow T1, T2, T3

A Counter
Example
Now consider:

T4(n) = n2

23

T1(n)

T2(n)

T3(n)

T4(n)

T1, T2, T3 are in the same complexity class

T4 is not

Complexity (so far…)

If there are constants c1 and c2 such that:

 T1(n) = c1 + c2T2(n)

then we say T1 and T2 are in the same complexity class*

24

* not a complete definition…but we are getting there

Back To Growth Functions

So what exactly counts as a step?

25

Back To Growth Functions

So what exactly counts as a step?
● An arithmetic operation
● Accessing a variable
● Printing to the screen
● etc

but…

26

Counting Steps

How many steps in each of these snippets?

27

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

28

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

T2(n) = 2

29

1 x = 10;

1

2

x = 10;

y = 20;

Counting Steps

How many steps in each of these snippets?

T1(n) = 1

T2(n) = 2

30

1 x = 10;

1

2

x = 10;

y = 20;

T2(n) = T1(n) + 1

They are in the same complexity class…in 250 we treat them as the same

Counting Steps

A step therefore is any code that always has the same runtime

31

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

32

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

Example: 𝚯(3n + 4) = {
n,
n - 6,
15n,
…

}

33

Notation - Big Theta

𝚯(f(n)) is the set of all functions in the same complexity class as f

Example: 𝚯(3n + 4) = {
n,
n - 6,
15n,
…

}

34g(n) ∈ 𝚯(f(n)) means g and f are in the same complexity class

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

35

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

36

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

Algorithm Foo is in 𝚯(f(n)) is common shorthand for T(n) ∈ 𝚯(f(n)) where
T(n) is the growth function describing the runtime of Foo

37

Common Shorthand

g(n) = 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

g(n) is in 𝚯(f(n)) is common shorthand for g(n) ∈ 𝚯(f(n))

Algorithm Foo is in 𝚯(f(n)) is common shorthand for T(n) ∈ 𝚯(f(n)) where
T(n) is the growth function describing the runtime of Foo

Moving forward: f(n), g(n), f1(n), etc will be used to name any
mathematical function that's a growth function

T(n), T1(n), etc will be used for growth functions for specific algorithms
38

Complexity Class
Names

𝚯(1): Constant

𝚯(log(n)): Logarithmic

𝚯(n): Linear

𝚯(n log(n)): Log-Linear

𝚯(n2): Quadratic

𝚯(nk): Polynomial

𝚯(2n): Exponential

39

Combining Classes

What complexity class is g(n) = n + n2 in?

40

Combining
Classes

41

n

n2
n2 + n

Combining
Classes

42

n

n2
n2 + n

n2 + n behaves a lot more like n2
than n as n gets bigger

Combining
Classes

43

n

n2
n2 + n

n2 + n behaves a lot more like n2
than n as n gets bigger

But it's not a constant factor
difference

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

How does n2 + n relate to these two functions?

44

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

45

remember, we only care about problems
with non-negative input sizes

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

n ≤ n2

46

multiply both sides by n

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

1 ≤ n

n ≤ n2

n + n2 ≤ 2n2

47

add n2 to both sides

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

0 ≤ n

48

obviously true

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

0 ≤ n

n2 ≤ n + n2

49

add n2 to both sides

Combining Classes

Consider the fact that n2 and 2n2 are in the same complexity class…

n2 ≤ n + n2 ≤ 2n2

So n2 + n should probably be in 𝚯(n2) too…

50

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

51

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

52

f shifted or stretched by
a constant factor

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

53

What do we mean by bounded from above/below?

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant n0 ≥ 0 and a constant c > 0 such that:

For all n ≥ n0, g(n) ≤ c · f(n)

54

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant n0 ≥ 0 and a constant c > 0 such that:

For all n ≥ n0, g(n) ≤ c · f(n)

In this case, we say that g(n) ∈ O(f(n))

55

Bounded from
Above: Big O

56

f(n)

Bounded from
Above: Big O

57

f(n)

c · f(n)

Bounded from
Above: Big O

58

f(n)

c · f(n)

The shaded area represents O(f(n)) –
the set of all functions bounded from
above by something f-shaped

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant n0 ≥ 0 and a constant c > 0 such that:

For all n ≥ n0, g(n) ≥ c · f(n)

59

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant n0 ≥ 0 and a constant c > 0 such that:

For all n ≥ n0, g(n) ≥ c · f(n)

In this case, we say that g(n) ∈ 𝛀(f(n))

60

Bounded from
Below: Big 𝛀

61

f(n)

Bounded from
Below: Big 𝛀

62

f(n)

c · f(n)

Bounded from
Below: Big 𝛀

63

f(n)

The shaded area represents 𝛀(f(n)) –
the set of all functions bounded from
below by something f-shaped

c · f(n)

Complexity: A More Complete Definition

f and g are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

64

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

65

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g(n) ∈ O(f(n))

and

g is bounded from below by something f-shaped

66

Complexity: A More Complete Definition

g(n) ∈ 𝚯(f(n)) iff:

g(n) ∈ O(f(n))

and

g(n) ∈ 𝛀(f(n))

67

Complexity
Class: Big 𝚯

68

f(n)

The blue is O(f(n))

chigh · f(n)

Complexity
Class: Big 𝚯

69

f(n)

The yellow is 𝛀(f(n))

clow · f(n)

Complexity
Class: Big 𝚯

70

f(n)

The overlap (green) is 𝚯(f(n))

clow · f(n)

chigh · f(n)

Complexity
Class: Big 𝚯

71

f(n)

𝚯(f(n)) is the set of functions that will
stay between chigh · f(n) and clow · f(n)
(after some constant n0)

clow · f(n)

chigh · f(n)

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

Complexity
Class Ranking

72

𝚯(n
2)

𝚯(n lo
g(n))

𝚯(n)

𝚯(log(n))

𝚯(1)

Rules of Thumb

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

73

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

74

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

75

If something is bounded from above by log(n), it's also bounded from above by n

Rules of Thumb

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(n log(n)) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n)

𝛀(2n) ⊂ 𝛀(n3) ⊂ 𝛀(n2) ⊂ 𝛀(n log(n)) ⊂ 𝛀(n) ⊂ 𝛀(log(n)) ⊂ 𝛀(1)

76

If something is bounded from below by n2, it's also bounded from below by n

Rules of Thumb

O(f(n)) (Big-O): The complexity class of f(n) and every lesser class

𝚯(f(n)) (Big-𝚯): The complexity class of f(n)

𝛀(f(n)) (Big-𝛀): The complexity class of f(n) and every greater class

77

78© Aleksandra Patrzalek, 2012

