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Class Logistics

Reminders

AI Quiz due Sun, Sept 8 at 11:59 PM.

Your final submission must have a score of 1.0 to pass the
class.
If you can’t submit in autolab, let course staff know ASAP.

PA0 due Sun, Sept 8 at 11:59 PM.

All you need to do is make sure you have a working
environment.
If you can’t submit in autolab, let course staff know ASAP.

WA1 due Sun, Sept 8 at 11:59 PM.

Summations, Limits, Exponentials; Friday’s Lecture
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Recap

Runtime
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Number of Training Examples

Alg. 1
Alg. 2

Alg. 3
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Recap

How many Steps?

1 x = 10;

vs

1 x = 10;

2 y = x + 1;

1 java instruction vs 2 java instructions
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Recap

How many Steps?

0: bipush 10

2: istore_1

3: return

vs

0: bipush 10

2: istore_1

3: iload_1

4: iconst_1

5: iadd

6: istore_2

7: return

3 java bytecode instructions vs 7 java bytecode instructions
Godbolt (https://godbolt.org/)
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Recap

title

1 x = 10;

vs

1 x = 10;

2 y = x + 1;

θ(1) vs θ(1) (Both code snippets take ’constant’ time).
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Recap

Steps

θ(1) is any computation that always1 has the same runtime.

1Offer void where prohibited, some approximations may apply.
© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Recap

Class Names

θ(1): Constant

θ(log(N)): Logarithmic

θ(N): Linear

θ(N log(N)): Log-Linear

θ(N2): Quadratic

θ(Nk) (for any k ≥ 1): Polynomial

θ(2N): Exponential
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 The classes are listed in order 
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Recap

Complexity Classes
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Recap

Complexity Classes
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Recap

Complexity Classes

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Recap

Complexity Classes

θ(N)
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Recap

Complexity Classes

θ(1)
θ(log(N))

θ(N)

θ(N log(N))

θ(N2)θ(2N)
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Recap

Zoom Out

θ(1)
θ(log(N))
θ(N)

θ(N log(N))

θ(N2)θ(2N)
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Recap

Comparing Algorithms

1 Algorithm 1 is θ(N2)

2 Algorithm 2 is θ(N)

Pick Algorithm 2 . . . usually.

1 Algorithm 1 is θ(N)

2 Algorithm 2 is θ(N)

Measure actual runtimes
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2 Algorithm 2 is θ(N)

Pick Algorithm 2
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Recap

Comparing Algorithms

1 Algorithm 1 is θ(N2)

2 Algorithm 2 is θ(N)

Pick Algorithm 2 . . . usually.

1 Algorithm 1 is θ(N)

2 Algorithm 2 is θ(N)

Measure actual runtimes
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Defining θ

Baseline

If g(N) = c1 + c2f (N), then g , f are in the same complexity class.
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Defining θ

Complexity Bounds

For N > 1:
N2 ≤ N2 + N ≤ 2N2

N2 + N should probably be in θ(N2) too.
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 For a "big enough" N, our f is always smaller than one function in the complexity class, and always bigger than a different function in the same complexity class. We say it's "bounded" from above and below 
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Asymptotic Analysis

Complexity Bounds

if:

flow (N), fhigh(N) ∈ θ(g(N))

flow (N) ≤ T (N) ≤ fhigh(N) (for all big enough N)

...then T (N) ∈ θ(g(N)) too!
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Asymptotic Analysis

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped

g is bounded from below by something f -shaped
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Asymptotic Analysis

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N))

g is bounded from below by something f -shaped
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Asymptotic Analysis

Complexity Bounds

f and g are in the same complexity class if:

g is bounded from above by something f -shaped
g(N) ∈ O(f (N))

g is bounded from below by something f -shaped
g(N) ∈ Ω(f (N))
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Asymptotic Analysis

Complexity Bounds

θ(1)

θ(log(N))

θ(N)

θ(N log(N))
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Asymptotic Analysis

Complexity Bounds

θ(N)
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Asymptotic Analysis

Complexity Bounds

O(N)
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Asymptotic Analysis

Complexity Bounds

Ω(N)
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Asymptotic Analysis

Complexity Bounds

O(1)

O(log(N))

O(N)

O(N log(N))
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Asymptotic Analysis

Complexity Bounds

Ω(1)

Ω(log(N))

Ω(N)

Ω(N log(N))
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Asymptotic Analysis

Complexity Bounds

O(f (N)) includes:

All functions in θ(f (N))
All functions in ’slower-growing’ complexity classes

Ω(f (N)) includes:

All functions in θ(f (N))
All functions in ’faster-growing’ complexity classes

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 'slower-growing' is a bit awkward; if f(N) is a runtime, then slower-growing means the algorithm runs faster. So, since it sort of means the same thing, we'll say 'smaller' instead. 
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Asymptotic Analysis

Complexity Bounds

O(f (N)) includes:

All functions in θ(f (N))
All functions in ’smaller’ complexity classes

Ω(f (N)) includes:

All functions in θ(f (N))
All functions in ’bigger’ complexity classes
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 'slower-growing' is a bit awkward; if f(N) is a runtime, then slower-growing means the algorithm runs faster. So, since it sort of means the same thing, we'll say 'smaller' instead. 
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Asymptotic Analysis

Complexity Bounds

O(f (N)) includes:

All functions in θ(f (N))
All functions in ’smaller’ complexity classes

Ω(f (N)) includes:

All functions in θ(f (N))
All functions in ’bigger’ complexity classes

O(f (N)) ∩ Ω(f (N)) = ???
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 'slower-growing' is a bit awkward; if f(N) is a runtime, then slower-growing means the algorithm runs faster. So, since it sort of means the same thing, we'll say 'smaller' instead. 
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Asymptotic Analysis

Complexity Bounds

O(f (N)) includes:

All functions in θ(f (N))
All functions in ’smaller’ complexity classes

Ω(f (N)) includes:

All functions in θ(f (N))
All functions in ’bigger’ complexity classes

O(f (N)) ∩ Ω(f (N)) = θ(f (N))
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 'slower-growing' is a bit awkward; if f(N) is a runtime, then slower-growing means the algorithm runs faster. So, since it sort of means the same thing, we'll say 'smaller' instead. 
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if...
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if... (g(N) ∈ O(f (N)))
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if... (g(N) ∈ O(f (N)))

For all N > 0: g(N) ≤ f (N)
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if... (g(N) ∈ O(f (N)))

For all N > 0: g(N) ≤ f (N)

But what about...

g(N) = 2N vs f (N) = N on any N

g(N) = log
(
N
2

)
vs f (N) = N on N = 1
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Asymptotic Analysis

Bounding From Above
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if... (g(N) ∈ O(f (N)))

For all N > 0: g(N) ≤ c · f (N)

Where...

... there is some c > 0

... there is some N0 > 0

But what about...

g(N) = 2N vs f (N) = N on any N

g(N) = log
(
N
2

)
vs f (N) = N on N = 1
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Asymptotic Analysis

Bounding From Above

g(N) is smaller than or equal to f (N) if... (g(N) ∈ O(f (N)))

For all N > N0: g(N) ≤ c · f (N)

Where...

... there is some c > 0

... there is some N0 > 0

But what about...

g(N) = 2N vs f (N) = N on any N

g(N) = log
(
N
2

)
vs f (N) = N on N = 1
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Asymptotic Analysis

Bounding from Above

To prove that g(N) is smaller than or equal to f (N)...

Give me a c > 0.

Give me a N0 ≥ 0.

Plug them into ∀N > N0 : g(N) ≤ c · f (N)

Simplify it and show me that you get a trivially true inequality.

To prove that g(N) is not smaller than or equal to f (N)...

∀N > N0 : g(N) ≤ c · f (N)

∀N > N0 :
g(N)
f (N) ≤ c

For any c that I get to pick...

show me how to find an N where g(N)
f (N) > c
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Tricks for Inequalities

Chain Rule

If X ≥ Y , Y ≥ Z , then X ≥ Z
To show: X ≥ Z , find a Y and show:

X ≥ Y

Y ≥ Z
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Tricks for Inequalities

Decomposition

If A ≥ C and B ≥ D then A+ B ≥ C + D
To show A+ B ≥ C + D, show that:

A ≥ C

B ≥ D
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Examples

Examples

g(N) = 1 f (N) = N

1
?
≤ c · N

Is there a c > 0 and N0 > 0 you can plug in to make this equation
true for all N ≥ N0?
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Is there a c > 0 and N0 > 0 you can plug in to make this equation
true for all N ≥ N0?
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Examples

Examples

g(N) = N + 2N2 f (N) = N2

N + 2N2
?

≤ c · N2
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Examples

g(N) = N + 2N2 f (N) = N2

N + 2N2
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Examples

Examples

g(N) = N + 2N2 f (N) = N2

N + 2N2
?

≤ c · N2

1 + 2N
?

≤ c · N
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Examples

Examples

g(N) = N + 2N2 f (N) = N2

N + 2N2
?

≤ c · N2

1 + 2N
?

≤ c · N

1 + 2N
?

≤ (a+ b) · N

Define c = a+ b
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g(N) = N + 2N2 f (N) = N2

N + 2N2
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≤ c · N2

1 + 2N
?

≤ c · N

1 + 2N
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≤ (a+ b) · N

1
?

≤ a · N
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Define c = a+ b
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Examples

Examples

g(N) = N + 2N2 f (N) = N2

N + 2N2
?

≤ c · N2

1 + 2N
?

≤ c · N

1 + 2N
?

≤ (a+ b) · N

1
?

≤ a · N

2N
?

≤ b · N

2
?

≤ b

Define c = a+ b
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Examples

Examples

1
?
≤ a · N (1)

2
?
≤ b (2)

Is there an a+ b = c > 0 and N0 > 0 you can plug in to make this
equation true for all N ≥ N0?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Asymptotic Analysis

Examples

Examples

g(N) = 3N + 1 f (N) = N2

3N + 1
?
≤ c · N2

3 +
1

N

?
≤ c · N

If X < Y and Y < Z , then X < Z :

3 +
1

N
≤ Y

?
≤ c · N

3 +
1

N
≤ 3 + 1

?
≤ c · N
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CSE 250: Asymptotic Analysis

Examples

Examples

3 +
1

N
≤ 4

?
≤ c · N

Is there a c > 0 and N0 ≥ 1 you can plug in to make this equation
true for all N ≥ N0?
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g(N) = 1 f (N) = N2

1
?
≤ c · N2

Is there a c > 0 and N0 > 0 you can plug in to make this equation
true for all N ≥ N0?

1 ∈ O(N2)

O(f (N)) is every mathematical function in the complexity class of f (N)
or a lesser class.
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CSE 250: Asymptotic Analysis

Bounds

Tight Bounds

So... along those lines: N ∈ O(N2)

We call this a loose bound.
g(N) ∈ O(f (N)) is a tight bound if there is no f ′(N) in a smaller
complexity class where g(N) ∈ O(f ′(N)).
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CSE 250: Asymptotic Analysis

Bounds

Bounding From Below

g(N) ∈ Ω(f (N)) if:

There is some N0 > 0

There is some c > 0

For all N > N0: g(N) ≥ c · f (N)

Ω(f (N)) is every mathematical function in the complexity class of f (N)
or a greater class.
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CSE 250: Asymptotic Analysis

Bounds

Rules of Thumb

θ(1): Constant
< θ(log(N)): Logarithmic
< θ(N): Linear
< θ(N log(N)): Log-Linear
< θ(N2): Quadratic
< θ(2N): Exponential
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Bounds

Rules of Thumb

O(1) ⊂ O(log(N))

O(log(N)) ⊂ O(N)

O(N) ⊂ O(N log(N))

O(N) ⊂ O(N2)

...
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CSE 250: Asymptotic Analysis

Bounds

Rules of Thumb

O(f (N)) (Big-O): The complexity class of f (N) and every
lesser class.

θ(f (N)) (Big-θ): The complexity class of f (N).

Ω(f (N)) (Big-Ω): The complexity class of f (N) and every
greater class.
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CSE 250: Asymptotic Analysis

Bounds

Rules of Thumb

θ
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CSE 250: Asymptotic Analysis

Bounds

Rules of Thumb

F (N) = f1(N) + f2(N) + . . .+ fk(N)

What complexity class is F (N) in?

f1(N) + f2(N) is in the greater of θ(f1(N)) and θ(f2(N)).

F (N) is in the greatest of any θ(fi (N))

We say the biggest fi is the dominant term.
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CSE 250: Asymptotic Analysis

Why?

Algorithms at 50k-ft

Algorithm 1 is θ(N2)

Algorithm 2 is θ(N log(N))

Which do you pick?
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CSE 250: Asymptotic Analysis

Why?

Scaling Up

At 1
4 ns per ’step’ (4 GHz):
f (n) 10 20 50 100 1000

log(log(n)) 0.43 ns 0.52 ns 0.62 ns 0.68 ns 0.82 ns
log(n) 0.83 ns 1.01 ns 1.41 ns 1.66 ns 2.49 ns

n 2.5 ns 5 ns 12.5 ns 25 ns 0.25 µs
n log(n) 8.3 ns 22 ns 71 ns 0.17 µs 2.49 µs

n2 25 ns 0.1 µs 0.63 µs 2.5 µs 0.25 ms
n5 25 µs 0.8 ms 78 ms 2.5 s 2.9 days
2n 0.25 µs 0.26 ms 3.26 days 1013 years 10284 years
n! 0.91 ms 19 years 1047 years 10141 years [yeah, no]
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CSE 250: Asymptotic Analysis

Why?

Asymptotic Notation

Big-θ (and Big-O, Big-Ω) gives us an easy shorthand for how
”good” an algorithm is.
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