CSE 250: Asymptotic Analysis Lecture 5

Sept 6, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Reminders

- Al Quiz due Sun, Sept 8 at 11:59 PM.
 - Your final submission must have a score of 1.0 to pass the class.
 - If you can't submit in autolab, let course staff know ASAP.
- PA0 due Sun, Sept 8 at 11:59 PM.
 - All you need to do is make sure you have a working environment.
 - If you can't submit in autolab, let course staff know ASAP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- WA1 due Sun, Sept 8 at 11:59 PM.
 - Summations, Limits, Exponentials; Friday's Lecture

CSE 250:	Asymptotic	Analysis
----------	------------	----------

Runtime

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

How many Steps?

1
$$x = 10;$$

VS
1 $x = 10;$
2 $y = x + 1;$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

1 java instruction vs 2 java instructions

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

How many Steps?

- 0: bipush 10
- 2: istore_1
- 3: return

VS

- 0: bipush 10
- 2: istore_1
- 3: iload_1
- 4: iconst_1
- 5: iadd
- 6: istore_2
- 7: return

3 java bytecode instructions vs 7 java bytecode instructions

ъ

title

1	x = 10;
	VS
1	x = 10;
2	y = x + 1;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\theta(1)$ vs $\theta(1)$ (Both code snippets take 'constant' time).

CSE 250: Asymptotic Analysis			
Recap			

Steps

$\theta(1)$ is any computation that always¹ has the same runtime.

¹Offer void where prohibited, some approximations may apply.

Class Names

- $\theta(1)$: Constant
- $\theta(\log(N))$: Logarithmic
- $\theta(N)$: Linear
- $\theta(N \log(N))$: Log-Linear
- $\theta(N^2)$: Quadratic
- $\theta(N^k)$ (for any $k \ge 1$): Polynomial

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\theta(2^N)$: Exponential

Complexity Classes

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexity Classes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Complexity Classes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexity Classes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

L_Recap

Complexity Classes

Zoom Out

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comparing Algorithms

1 Algorithm 1 is $\theta(N^2)$

2 Algorithm 2 is $\theta(N)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comparing Algorithms

Algorithm 1 is θ(N²)
 Algorithm 2 is θ(N)

Pick Algorithm 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comparing Algorithms

1 Algorithm 1 is $\theta(N^2)$

2 Algorithm 2 is $\theta(N)$

Pick Algorithm 2 . . . usually.

Comparing Algorithms

Algorithm 1 is θ(N²)
 Algorithm 2 is θ(N)
 Pick Algorithm 2 ... usually.

1 Algorithm 1 is $\theta(N)$

2 Algorithm 2 is $\theta(N)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Comparing Algorithms

Algorithm 1 is θ(N²)
 Algorithm 2 is θ(N)
 Pick Algorithm 2 ... usually.

1 Algorithm 1 is $\theta(N)$

2 Algorithm 2 is $\theta(N)$

Measure actual runtimes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Baseline

If $g(N) = c_1 + c_2 f(N)$, then g, f are in the same complexity class.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \Box Defining θ

Complexity Bounds

For N > 1:

$N^2 \leq N^2 + N \leq 2N^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\Box Defining θ

Complexity Bounds

For N>1: $N^2\leq N^2+N\leq 2N^2$

 $N^2 + N$ should probably be in $\theta(N^2)$ too.

Complexity Bounds

if:

$$f_{low}(N), f_{high}(N) \in \theta(g(N))$$

$$f_{low}(N) \leq T(N) \leq f_{high}(N) \text{ (for all big enough } N)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

...then $T(N) \in \theta(g(N))$ too!

Complexity Bounds

f and g are in the same complexity class if:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

f and g are in the same complexity class if:

■ g is bounded from above by something f-shaped

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped
- g is bounded from below by something f-shaped

Complexity Bounds

- f and g are in the same complexity class if:
 - g is bounded from above by something f-shaped $g(N) \in O(f(N))$
 - g is bounded from below by something f-shaped

Complexity Bounds

f and g are in the same complexity class if:

- g is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complexity Bounds

Complexity Bounds

Complexity Bounds

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Complexity Bounds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Complexity Bounds

Complexity Bounds

Complexity Bounds

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'slower-growing' complexity classes
- $\Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'faster-growing' complexity classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complexity Bounds

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'bigger' complexity classes
Complexity Bounds

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'bigger' complexity classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $O(f(N)) \cap \Omega(f(N)) = ???$

Complexity Bounds

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'smaller' complexity classes
- $\Omega(f(N))$ includes:
 - All functions in $\theta(f(N))$
 - All functions in 'bigger' complexity classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $O(f(N)) \cap \Omega(f(N)) = \theta(f(N))$

Bounding From Above

g(N) is smaller than or equal to f(N) if...

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bounding From Above

g(N) is smaller than or equal to f(N) if... $(g(N) \in O(f(N)))$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bounding From Above

g(N) is smaller than or equal to f(N) if... $(g(N) \in O(f(N)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For all N > 0: $g(N) \le f(N)$

Bounding From Above

g(N) is smaller than or equal to f(N) if...

 $(g(N) \in O(f(N)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For all N > 0: $g(N) \leq f(N)$

•
$$g(N) = 2N$$
 vs $f(N) = N$ on any N

Bounding From Above

g(N) is smaller than or equal to f(N) if...

 $(g(N) \in O(f(N)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For all N > 0: $g(N) \leq c \cdot f(N)$

•
$$g(N) = 2N$$
 vs $f(N) = N$ on any N

Bounding From Above

g(N) is smaller than or equal to f(N) if... $(g(N) \in O(f(N)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For all N > 0: $g(N) \leq c \cdot f(N)$

Where...

• ... there is some c > 0

•
$$g(N) = 2N$$
 vs $f(N) = N$ on any N

Bounding From Above

g(N) is smaller than or equal to f(N) if... $(g(N) \in O(f(N)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For all N > 0: $g(N) \leq c \cdot f(N)$

Where...

• ... there is some c > 0

■
$$g(N) = 2N$$
 vs $f(N) = N$ on any N
■ $g(N) = \log(\frac{N}{2})$ vs $f(N) = N$ on $N = 1$

Bounding From Above

g(N) is smaller than or equal to f(N) if...

$$(g(N) \in O(f(N)))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For all $N > N_0$: $g(N) \le c \cdot f(N)$

Where...

- ... there is some c > 0
- ... there is some $N_0 > 0$

•
$$g(N) = 2N$$
 vs $f(N) = N$ on any N
• $g(N) = \log(\frac{N}{2})$ vs $f(N) = N$ on $N = 1$

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• Give me a c > 0.

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Give me a c > 0.
- Give me a $N_0 \ge 0$.

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$
- Simplify it and show me that you get a trivially true inequality.

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$
- Simplify it and show me that you get a trivially true inequality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$
- Simplify it and show me that you get a trivially true inequality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\forall N > N_0 : g(N) \le c \cdot f(N)$$

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$
- Simplify it and show me that you get a trivially true inequality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\forall N > N_0 : g(N) \le c \cdot f(N) \forall N > N_0 : \frac{g(N)}{f(N)} \le c$$

Bounding from Above

To prove that g(N) is smaller than or equal to f(N)...

- Give me a c > 0.
- Give me a $N_0 \ge 0$.
- Plug them into $\forall N > N_0 : g(N) \leq c \cdot f(N)$
- Simplify it and show me that you get a trivially true inequality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\forall N > N_0 : g(N) \le c \cdot f(N) \forall N > N_0 : \frac{g(N)}{f(N)} \le c$$

└─ Tricks for Inequalities

Chain Rule

If $X \ge Y$, $Y \ge Z$, then $X \ge Z$ To show: $X \ge Z$, find a Y and show: • $X \ge Y$ • $Y \ge Z$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

└─ Tricks for Inequalities

Decomposition

If $A \ge C$ and $B \ge D$ then $A + B \ge C + D$ To show $A + B \ge C + D$, show that: • $A \ge C$ • $B \ge D$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$g(N) = 1 \qquad f(N) = N$$

$$g(N) = 1$$
 $f(N) = N$
 $1 \stackrel{?}{\leq} c \cdot N$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$g(N) = 1$$
 $f(N) = N$
 $1 \stackrel{?}{\leq} c \cdot N$

Is there a c > 0 and $N_0 > 0$ you can plug in to make this equation true for all $N \ge N_0$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$g(N) = N + 2N^2 \qquad f(N) = N^2$$

$$g(N) = N + 2N^2$$
 $f(N) = N^2$
 $N + 2N^2 \stackrel{?}{\leq} c \cdot N^2$

$$g(N) = N + 2N^{2} \qquad f(N) = N^{2}$$
$$N + 2N^{2} \stackrel{?}{\leq} c \cdot N^{2}$$
$$1 + 2N \stackrel{?}{\leq} c \cdot N$$

・ロト・(四)・(日)・(日)・(日)・(日)

$$g(N) = N + 2N^{2} \qquad f(N) = N^{2}$$
$$N + 2N^{2} \stackrel{?}{\leq} c \cdot N^{2}$$
$$1 + 2N \stackrel{?}{\leq} c \cdot N$$
$$1 + 2N \stackrel{?}{\leq} (a+b) \cdot N$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define c = a + b

$$g(N) = N + 2N^{2} \qquad f(N) = N^{2}$$
$$N + 2N^{2} \stackrel{?}{\leq} c \cdot N^{2}$$
$$1 + 2N \stackrel{?}{\leq} c \cdot N$$
$$1 + 2N \stackrel{?}{\leq} (a+b) \cdot N$$
$$1 \stackrel{?}{\leq} a \cdot N$$
$$2N \stackrel{?}{\leq} b \cdot N$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define
$$c = a + b$$

$$g(N) = N + 2N^{2} \qquad f(N) = N^{2}$$
$$N + 2N^{2} \stackrel{?}{\leq} c \cdot N^{2}$$
$$1 + 2N \stackrel{?}{\leq} c \cdot N$$
$$1 + 2N \stackrel{?}{\leq} (a+b) \cdot N$$
$$\frac{1 \stackrel{?}{\leq} a \cdot N}{2N \stackrel{?}{\leq} b \cdot N}$$
$$2 \stackrel{?}{\leq} b$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Define
$$c = a + b$$

Examples

$$\frac{1 \stackrel{?}{\leq} a \cdot N \qquad (1)}{2 \stackrel{?}{\leq} b \qquad (2)}$$

Is there an a + b = c > 0 and $N_0 > 0$ you can plug in to make this equation true for all $N \ge N_0$?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$g(N) = 3N + 1 \qquad f(N) = N^2$$

$$g(N) = 3N + 1$$
 $f(N) = N^2$
 $3N + 1 \stackrel{?}{\leq} c \cdot N^2$

$$g(N) = 3N + 1 \qquad f(N) = N^2$$
$$3N + 1 \stackrel{?}{\leq} c \cdot N^2$$
$$3 + \frac{1}{N} \stackrel{?}{\leq} c \cdot N$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$g(N) = 3N + 1$$
 $f(N) = N^2$
 $3N + 1 \stackrel{?}{\leq} c \cdot N^2$
 $3 + \frac{1}{N} \stackrel{?}{\leq} c \cdot N$
nd $Y < Z$, then $X < Z$:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

If X < Y a

$$g(N) = 3N + 1 \qquad f(N) = N^2$$
$$3N + 1 \stackrel{?}{\leq} c \cdot N^2$$
$$3 + \frac{1}{N} \stackrel{?}{\leq} c \cdot N$$
If X < Y and Y < Z, then X < Z:
$$3 + \frac{1}{N} \leq Y \stackrel{?}{\leq} c \cdot N$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$g(N) = 3N + 1 \qquad f(N) = N^2$$
$$3N + 1 \stackrel{?}{\leq} c \cdot N^2$$
$$3 + \frac{1}{N} \stackrel{?}{\leq} c \cdot N$$
If X < Y and Y < Z, then X < Z:
$$3 + \frac{1}{N} \leq Y \stackrel{?}{\leq} c \cdot N$$

$$3 + \frac{1}{N} \le 3 + 1 \le c \cdot N$$

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$3 + \frac{1}{N} \le 4 \stackrel{?}{\le} c \cdot N$$

Examples

$$3 + \frac{1}{N} \le 4 \stackrel{?}{\le} c \cdot N$$

Is there a c>0 and $N_0\geq 1$ you can plug in to make this equation true for all $N\geq N_0?$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$g(N) = 1 \qquad f(N) = N^2$$

$$egin{array}{ll} g({\sf N})=1 & f({\sf N})={\sf N}^2 \ & 1 \stackrel{?}{\leq} & c \cdot {\sf N}^2 \end{array}$$

Examples

$$g(N) = 1$$
 $f(N) = N^2$
 $1 \stackrel{?}{<} c \cdot N^2$

Is there a c > 0 and $N_0 > 0$ you can plug in to make this equation true for all $N \ge N_0$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

$$g(N) = 1 \qquad f(N) = N^2$$
$$1 \stackrel{?}{\leq} c \cdot N^2$$

Is there a c > 0 and $N_0 > 0$ you can plug in to make this equation true for all $N \ge N_0$?

 $1 \in O(N^2)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Examples

$$g(N) = 1$$
 $f(N) = N^2$
 $1 \stackrel{?}{\leq} c \cdot N^2$

Is there a c > 0 and $N_0 > 0$ you can plug in to make this equation true for all $N \ge N_0$?

$$1 \in O(N^2)$$

O(f(N)) is every mathematical function in the complexity class of f(N) or a lesser class.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Tight Bounds

So... along those lines: $N \in O(N^2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Tight Bounds

So... along those lines: $N \in O(N^2)$ We call this a **loose** bound.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Tight Bounds

So... along those lines: $N \in O(N^2)$ We call this a **loose** bound. $g(N) \in O(f(N))$ is a **tight** bound if there is no f'(N) in a **smaller** complexity class where $g(N) \in O(f'(N))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bounding From Below

- $g(N) \in \Omega(f(N))$ if:
 - There is some $N_0 > 0$
 - There is some c > 0
 - For all $N > N_0$: $g(N) \ge c \cdot f(N)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bounding From Below

- $g(N) \in \Omega(f(N))$ if:
 - There is some $N_0 > 0$
 - There is some c > 0
 - For all $N > N_0$: $g(N) \ge c \cdot f(N)$

 $\Omega(f(N))$ is every mathematical function in the complexity class of f(N) or a greater class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rules of Thumb

 $\begin{array}{l} \theta(1): \ {\sf Constant} \\ < \theta(\log(N)): \ {\sf Logarithmic} \\ < \theta(N): \ {\sf Linear} \\ < \theta(N\log(N)): \ {\sf Log-Linear} \\ < \theta(N^2): \ {\sf Quadratic} \\ < \theta(2^N): \ {\sf Exponential} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $O(1) \subset O(\log(N))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $O(1) \subset O(\log(N))$

$O(\log(N)) \subset O(N)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $O(1) \subset O(\log(N))$

$O(\log(N)) \subset O(N)$

 $O(N) \subset O(N\log(N))$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $O(1) \subset O(\log(N))$

 $O(\log(N)) \subset O(N)$

 $O(N) \subset O(N \log(N))$

 $O(N) \subset O(N^2)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(c) 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 $O(1) \subset O(\log(N))$

 $O(\log(N)) \subset O(N)$

 $O(N) \subset O(N \log(N))$

 $O(N)\subset O(N^2)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

. . .

(c) 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

- O(f(N)) (Big-O): The complexity class of f(N) and every lesser class.
- $\theta(f(N))$ (Big- θ): The complexity class of f(N).
- $\Omega(f(N))$ (Big- Ω): The complexity class of f(N) and every greater class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Rules of Thumb

 θ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Rules of Thumb

$O \\ \theta$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

C 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

Rules of Thumb

 $O \\ \theta \\ \Omega$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rules of Thumb

© Aleksandra Patrzalek, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What complexity class is F(N) in?

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

What complexity class is F(N) in?

 $f_1(N) + f_2(N)$ is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

What complexity class is F(N) in?

 $f_1(N) + f_2(N)$ is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

F(N) is in the greatest of any $\theta(f_i(N))$

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

What complexity class is F(N) in?

 $f_1(N) + f_2(N)$ is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

F(N) is in the greatest of any $\theta(f_i(N))$

We say the biggest f_i is the dominant term.

Algorithms at 50k-ft

- Algorithm 1 is $\theta(N^2)$
- Algorithm 2 is $\theta(N \log(N))$

Which do you pick?

Scaling Up

At $\frac{1}{4}$ ns	per 'step'	(4 GHz):
---------------------	------------	----------

f(n)	10	20	50	100	1000
$\log(\log(n))$	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
$\log(n)$	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
п	2.5 ns	5 ns	12.5 ns	25 ns	0.25 µs
$n\log(n)$	8.3 ns	22 ns	71 ns	0.17 µs	2.49 µs
n ²	25 ns	0.1 µs	0.63 µs	2.5 µs	0.25 ms
n ⁵	25 µs	0.8 ms	78 ms	2.5 s	2.9 days
2 ⁿ	0.25 µs	0.26 ms	3.26 days	1013 years	10284 years
<i>n</i> !	0.91 ms	19 years	1047 years	10141 years	[yeah, no]

Asymptotic Notation

 $\mathsf{Big}\text{-}\theta$ (and $\mathsf{Big}\text{-}\mathsf{O},\,\mathsf{Big}\text{-}\Omega)$ gives us an easy shorthand for how "good" an algorithm is.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00