CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 06: Proving Bounds

Announcements and Feedback

- PA1 released
 - Testing phase due Sunday 9/15 @ 11:59PM
 - Recitation this week will go over tips for testing
 - Try building/running your tests before submitting!
 - Implementation phase due Sunday 9/22 @ 11:59PM

"Shape" of a Function

When do we consider two functions to have the same shape?

Additive Factors

Consider two growth functions:

 $T_1(n) = 3n$ $T_2(n) = 3n + 3$ Adding (or subtracting) a constant preserves the shape

n

Multiplicative Factors

Consider two growth functions:

 $T_{1}(n) = 3n$ $T_{3}(n) = 6n$

5

A Counter Example

Now consider:

 $T_{4}(n) = n^{2}$

 T_4 is a distinctly different shape. Notice that no matter what constant factors we add or multiply by, T_4 will **always** outgrow T_1 , T_2 , T_3 steps $T_2(n)$ $T_1(n)$ $T_3(n)$ **T**₄(**n**)

n

Complexity Class

f and **g** are in the same complexity class, denoted $g(n) \in \Theta(f(n))$, iff:

g is bounded from above by something **f**-shaped

and

g is bounded from below by something **f**-shaped

g(**n**) is bounded from above by **f**(**n**) if:

There exists a constant $n_0 \ge 0$ and a constant c > 0 such that:

For all $n \ge n_0$, $g(n) \le c \cdot f(n)$

In this case, we say that $g(n) \in O(f(n))$

O(**f**(**n**)) is the set of all functions bounded from above by **f**(**n**)

n

$$g(n) = \frac{n^2}{2} + 4n + 7$$

Prove that $g(n) \in O(n^2)$

$$\frac{n^2}{2} + 4n + 7 \le c \cdot n^2$$

Inequality Tricks

- 1. $f(n) \ge g(n)$ is true if $f(n)/a \ge g(n)/a$ (for any a > 0)
- 2. $f(n) \ge g(n)$ is true if $f(n)*a \ge g(n)*a$ (for any a > 0)
- 3. $x + a \ge y + b$ is true if $x \ge y$ and $a \ge b$ (for any a, b)
- 4. $x \ge y$ is true if $x \ge a$ and $a \ge y$ (for any a)
- 5. $1 \leq \log(n) \leq n \leq n^2 \leq n^k \text{ (for } k \geq 2) \leq 2^n$

$$\frac{n^2}{2} \le c_1 \cdot n^2$$

$$\frac{n^2}{2} \le c_1 \cdot n^2$$

This is true for all $n \ge 0$ if we set c_1 to 1/2

$$4n \le c_2 \cdot n^2$$

$$4n \le c_2 \cdot n^2$$

This is true for all $n \ge 1$ if we set c_2 to 4

$$7 \le c_3 \cdot n^2$$

$$7 \le c_3 \cdot n^2$$

This is true for all $n \ge 1$ if we set c_3 to 7

$$\frac{n^2}{2} + 4n + 7 \le c \cdot n^2$$

Therefore if we let c = 11.5, then for all $n \ge 1$ the above holds true Therfore $g(n) \in O(n^2)$

n

29

g(**n**) is bounded from below by **f**(**n**) if:

There exists a constant $n_0 \ge 0$ and a constant c > 0 such that:

For all $n \ge n_0$, $g(n) \ge c \cdot f(n)$

In this case, we say that $g(n) \in \Omega(f(n))$

 $\Omega(f(n))$ is the set of all functions bounded from below by f(n)

$$g(n) = \frac{n^2}{2} + 4n + 7$$

Prove that $g(n) \in \Omega(n^2)$

$$\frac{n^2}{2} + 4n + 7 \ge c \cdot n^2$$

$$\frac{n^2}{2} \ge c_1 \cdot n^2$$

$$\frac{n^2}{2} \ge c_1 \cdot n^2$$

This is true for all $n \ge 0$ if we set c_1 to 1/2

Bounded from Below: Big ${f \Omega}$

Ζ

$$\frac{n^2}{2} + 4n + 7 \ge c \cdot n^2$$

Just need to show that 4n and $7 are \ge 0$

By adding non-negative things to the first term we can only make it bigger!

Bounded from Below: Big Ω

Bounded from Below: Big Ω

Bounded from Below: Big Ω

Complexity Class: Big

f and **g** are in the same complexity class, denoted $g(n) \in \Theta(f(n))$, iff:

g is bounded from above by something **f**-shaped

and

g is bounded from below by something **f**-shaped

Complexity Class: Big

f and g are in the same complexity class, denoted $g(n) \in \Theta(f(n))$, iff: $g(n) \in O(f(n))$ and

 $g(n) \in \Omega(f(n))$

Bounded from Below: Big

$$g(n) = \frac{n^2}{2} + 4n + 7$$

Prove that $g(n) \in \Theta(n^2)$

Bounded from Below: Big Θ

$$g(n) = \frac{n^2}{2} + 4n + 7$$

Prove that $g(n) \in \Theta(n^2)$

We just proved that $g(n) \in O(n^2)$ and $g(n) \in \Omega(n^2)$ Therefore we have proved that $g(n) \in \Theta(n^2)$

Complexity Class: Big O

Complexity Class: Big O

Complexity Class: Big Θ

47

Complexity Class: Big O

Complexity Class: Big

Once we move past $n_{o'} g(n)$ will never leave the green region.

It is therefore in the quadratic complexity class.

Remember: the constants are *specific* constants that we solved for

Complexity Class Ranking

 $\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n \log(n)) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)$

Big O Subsets

 $O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$

51

Shortcut

What complexity class do each of the following belong to:

 $f(n) = 4n + n^2$

 $g(n)=2^n+4n$

 $h(n) = 100 n \log(n) + 73n$

Shortcut

What complexity class do each of the following belong to:

- $f(n) = 4n + n^2 \in \Theta(n^2)$
- $g(n) = 2^n + 4n \in \Theta(2^n)$
- $h(n) = 100 n \log(n) + 73n \in \Theta(n \log(n))$

Shortcut

What complexity class do each of the following belong to:

```
f(n) = 4n + n^2 \in \Theta(n^2)
```

```
g(n) = 2^n + 4n \in \Theta(2^n)
```

```
h(n) = 100 n \log(n) + 73n \in \Theta(n \log(n))
```

Shortcut: Just consider the complexity of the most dominant term

Why Focus on Dominating Terms?

f(n)	10	20	50	100	1000
log(log(n))	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
log(n)	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
n	2.5 ns	5 ns	12.5 ns	25 ns	0.25 µs
nlog(n)	8.3 ns	22 ns	71 ns	0.17 µs	2.49 µs
n^2 5	25 ns	0.1 µs	0.63 µs	2.5 µs	0.25 ms
$\frac{n}{2^n}$	25 µs	0.8 ms	78 ms	2.5 s	2.9 days
$\frac{2}{n!}$	0.25 µs	0.26 ms	3.26 days	10 ¹³ years	10 ²⁸⁴ years
	0.91 ms	19 years	10 ⁴⁷ years	10 ¹⁴¹ years	55

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in O(n^2)$

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in O(n^2)$ Is f(n) in $O(n^3)$?

 $f(n) = 4n + n^2 ∈ Θ(n^2), \text{ therefore } f(n) = 4n + n^2 ∈ O(n^2) \checkmark$ Is f(n) in $O(n^3)? \checkmark$

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in O(n^2)$ Is f(n) in $O(n^3)$? Is f(n) in $O(2^n)$?

 $f(n) = 4n + n^2 ∈ Θ(n^2), \text{ therefore } f(n) = 4n + n^2 ∈ O(n^2) \checkmark$ Is f(n) in $O(n^3)? \checkmark$ Is f(n) in $O(2^n)? \checkmark$

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in O(n^2)$ Is f(n) in $O(n^3)$? Is f(n) in $O(2^n)$? Is f(n) in O(n)?

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in O(n^2)$ Is f(n) in $O(n^3)$? Is f(n) in $O(2^n)$? Is f(n) in O(n)? X

 $f(n) = 4n + n^{2} \in \Theta(n^{2}), \text{ therefore } f(n) = 4n + n^{2} \in O(n^{2}) \checkmark$ Is f(n) in $O(n^{3})? \checkmark$ Is f(n) in $O(2^{n})? \checkmark$ Is f(n) in $O(n)? \checkmark$ $n^{2}, n^{3}, \text{ and } 2^{n}$ all bound f(n) from above

n², n³, and 2ⁿ all bound f(n) from above
n² is a <u>tight</u> upper bound of f(n)
(there is no smaller upper bound for f(n))

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$?

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$?

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$?

Is *f*(*n*) in **Ω**(log(*n*))?

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$? X Is f(n) in $\Omega(\log(n))$?

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$? X Is f(n) in $\Omega(\log(n))$? Is f(n) in $\Omega(n)$?

 $f(n) = 4n + n^2 ∈ Θ(n^2), \text{ therefore } f(n) = 4n + n^2 ∈ Ω(n^2) \checkmark$ Is f(n) in $Ω(n^3)? ×$ Is f(n) in $Ω(\log(n))? \checkmark$ Is f(n) in $Ω(n)? \checkmark$

 $f(n) = 4n + n^2 \in \Theta(n^2)$, therefore $f(n) = 4n + n^2 \in \Omega(n^2)$ Is f(n) in $\Omega(n^3)$?

Is f(n) in $\Omega(\log(n))?$

Is **f(n)** in **Ω(n)**? ✓

n², n, and log(n) all bound f(n) from below
n² is a <u>tight</u> lower bound of f(n)
(there is no larger lower bound for f(n))

If $g(n) \in \Theta(f(n))$, then:

- $g(n) \in O(f(n))$ is a tight upper bound
- $g(n) \in \Omega(f(n))$ is a tight lower bound
Tight Bounds

If $g(n) \in \Theta(f(n))$, then:

- $g(n) \in O(f(n))$ is a tight upper bound
- $g(n) \in \Omega(f(n))$ is a tight lower bound

But what if the tight upper bound and tight lower bound are not the same?

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function?

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

What is the tight lower bound of this function?

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function? $T(n) \in O(n^2)$ What is the tight lower bound of this function? $T(n) \in \Omega(n)$

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

What is the tight lower bound of this function? $T(n) \in \Omega(n)$

What is the complexity class of this function?

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

What is the tight lower bound of this function? $T(n) \in \Omega(n)$

What is the complexity class of this function? It does not have one!

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

It is not bounded from above by n, therefore it cannot be in $\Theta(n)$

It is not bounded from below by n^2 , therefore it cannot be in $\Theta(n^2)$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

What is the tight lower bound of this function? $T(n) \in \Omega(n)$

What is the complexity class of this function? It does not have one!