
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 11: Recursion

mailto:epmikida@buffalo.edu

Announcements

● PA1 Implementation due Sunday, 9/22 @ 11:59PM
○ Continue with the same repo you've been using

● WA2 will be released after the PA1 deadline, due 9/29 @ 11:59PM

2

List Summary So Far

3

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

What is the runtime of add(int idx, E elem) for an ArrayList?

4

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

Each add is O(1). Total for n calls is O(n). Amortized is O(n/n) = O(1)

What is the runtime of add(int idx, E elem) for an ArrayList?

To add between two elements requires the rest of the elements to be
shifted to the right (opposite of remove), so runtime is always O(n).

5

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

6

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

ArrayList

Since the amortized runtime of add for ArrayList and LinkedList,
adding the n lines of the CSV file will take O(n) time for both…

But ArrayLists will then have an advantage because looking up records
by index will be O(1) whereas LinkedLists will be O(n)

7

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

8

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

LinkedList

The enumeration will cost a total of O(n) for both types of List

But some users will experience longer waits being added to the List if
implemented as an ArrayList due to the need for it to occasionally resize

9

Recursion

10

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

11

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)
12

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

13

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

factorial(2)

14

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

factorial(2)

factorial(1)

15

Factorial

16

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; }

 else { return n * factorial(n - 1); }

}

Factorial

17

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← Base Case

 else { return n * factorial(n - 1); }

}

Factorial

18

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← Base Case

 else { return n * factorial(n - 1); } ← Recursive Case

}

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

19

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

20

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

21

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

22

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

23

Fibonacci

fibb(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

fib(n) = fib(n-1) + fib(n-2)

24

Fibonacci

1

2

3

4

public int fib(int n) {

 if(n < 2) { return 1; }

 else { return fib(n-1) + fib(n - 2); }

}

25

Fibonacci

1

2

3

4

public int fib(int n) {

 if(n < 2) { return 1; } ← Base Case

 else { return fib(n-1) + fib(n - 2); }

}

26

Fibonacci

1

2

3

4

public int fib(int n) {

 if(n < 2) { return 1; } ← Base Case

 else { return fib(n-1) + fib(n - 2); } ← Recursive Case

}

27

Towers of Hanoi

Live demo!

28

But What is the Complexity?

29

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; }

 else { return n * factorial(n - 1); }

}

But What is the Complexity?

30

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← 𝚯(1)
 else { return n * factorial(n - 1); }

}

But What is the Complexity?

31

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← 𝚯(1)
 else { return n * factorial(n - 1); } ← 𝚯(1) + 𝚯(???)
}

But What is the Complexity?

32

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← 𝚯(1)
 else { return n * factorial(n - 1); } ← 𝚯(1) + 𝚯(???)
}

How do we figure out complexity of a function, when part of
the runtime of the function is calling itself?

To know the complexity of factorial, we need to…know the
complexity of factorial?

Complexity of factorial

Solve for T(n)

33

Complexity of factorial

Solve for T(n)

Approach:

1. Generate a hypothesis
2. Prove your hypothesis for the base case

3. Prove the hypothesis for the recursive case inductively

34

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

35

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

36

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

37

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

38

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

39

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

What is the pattern?

40

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

What is the pattern?

Hypothesis: T(n) ∈ O(n)

41

Step 1 - Generate a Hypothesis

Let's start by looking at the runtime for increasing values of n

𝚯(1), 2𝚯(1), 3𝚯(1), 4𝚯(1), 5𝚯(1), 6𝚯(1), 7𝚯(1)

What is the pattern?

Hypothesis: T(n) ∈ O(n)

(there is some c > 0 such that T(n) ≤ c · n)

42

Prove for the Base Case

First, lets make our constants explicit

43

Prove T(n) ∈ O(n) for the Base Case

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case: n = 1

T(1) ≤ c · 1

44

Prove T(n) ∈ O(n) for the Base Case

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case: n = 1

T(1) ≤ c · 1

T(1) ≤ c

45

Prove T(n) ∈ O(n) for the Base Case

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case: n = 1

T(1) ≤ c · 1

T(1) ≤ c

c0 ≤ c

46

Prove T(n) ∈ O(n) for the Base Case

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case: n = 1

T(1) ≤ c · 1

T(1) ≤ c

c0 ≤ c

True for any c ≥ c0

47

Prove T(n) ∈ O(n) for the Base Case + 1

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 1: n = 2

T(2) ≤ c · 2

T(1) + c1 ≤ 2c

co + c1 ≤ 2c

We already know there's a c ≥ c1, so…

True for any c ≥ c1

48

Prove T(n) ∈ O(n) for the Base Case + 1

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 1: n = 2

T(2) ≤ c · 2

T(1) + c1 ≤ 2c

co + c1 ≤ 2c

We already know there's a c ≥ c1, so…

True for any c ≥ c1

49

Expand T(2) based on
the definition of T

Prove T(n) ∈ O(n) for the Base Case + 1

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 1: n = 2

T(2) ≤ c · 2

T(1) + c1 ≤ 2c

c0 + c1 ≤ 2c

We already know there's a c ≥ c1, so…

True for any c ≥ c1

50

Prove T(n) ∈ O(n) for the Base Case + 1

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 1: n = 2

T(2) ≤ c · 2

T(1) + c1 ≤ 2c

c0 + c1 ≤ 2c

We already know there's a c ≥ c0, so…

True for any c ≥ c1

51

Prove T(n) ∈ O(n) for the Base Case + 1

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 1: n = 2

T(2) ≤ c · 2

T(1) + c1 ≤ 2c

c0 + c1 ≤ 2c

We already know there's a c ≥ c0, so…

True for any c ≥ c1

52

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

53

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

54

Expand T(3) based on
the definition of T

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c…,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

55

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c…therefore T(2) + c1
 ≤ 2c + c1,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

56

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c…therefore T(2) + c1
 ≤ 2c + c1,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

57

Prove T(n) ∈ O(n) for the Base Case + 2

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 3

T(3) ≤ c · 3

T(2) + c1 ≤ 3c

We know there's a c s.t. T(2) ≤ 2c…therefore T(2) + c1
 ≤ 2c + c1,

So if we show that 2c + c1 ≤ 3c, then T(2) + c1 ≤ 2c + c1 ≤ 3c

True for any c ≥ c1

58

Prove T(n) ∈ O(n) for the Base Case + 3

Prove: T(n) ∈ O(n) (ie: there exists a constant, c, such that T(n) ≤ c · n)
Base Case + 2: n = 4

T(4) ≤ c · 4

T(3) + c1 ≤ 4c

We know there's a c s.t. T(3) ≤ 3c…therefore T(3) + c1
 ≤ 3c + c1,

So if we show that 3c + c1 ≤ 4c, then T(3) + c1 ≤ 3c + c1 ≤ 4c

True for any c ≥ c1

59

Proving the Hypothesis Inductively

We're starting to see a pattern…

60

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n…

61

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 …

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n…

62

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 …

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n…

63

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 …

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n…

…but there are infinitely many possible values of n

64

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 …

Proving the Hypothesis Inductively

We can prove our hypothesis for specific values of n…

…but there are infinitely many possible values of n

Instead, let's prove that we can derive an unproven case from a proven
one!

65

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 …

Proving the Hypothesis Inductively

Approach: Assume our hypothesis is true for any n' < n;
Now prove it must also hold true for n.

66

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

67

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

68

Expand T(n) based on
the definition of T

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

69

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

70

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

71

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

72

Proving the Hypothesis Inductively

Assume: There is a c > 0 s.t. T(n - 1) ≤ c · (n - 1)
Prove: There is a c > 0 s.t. T(n) ≤ c · n

T(n) ≤ c · n
T(n - 1) + c1 ≤ c · n

By the inductive assumption, there is a c s.t. T(n - 1) ≤ (n - 1)c
So if we show that (n - 1)c + c1 ≤ nc, then…

T(n - 1) + c1 ≤ (n - 1)c + c1 ≤ nc
True for any c ≥ c1

Therefore, we've proven our hypothesis for the Base Case, and inductively for the Recursive Case.
Therefore, the complexity of factorial is 𝚯(n) 73

How much space is used?

factorial(n)
74

How much space is used?

factorial(n)

factorial(n-1)

75

How much space is used?

factorial(n)

factorial(n-1)

factorial(n-2)

76

How much space is used?

factorial(n)

factorial(n-1)

factorial(n-2)

factorial(n-3)

77

How much space is used?

factorial(n)

factorial(n-1)

factorial(n-2)

factorial(n-3)

factorial(n-4)

...

78

If the last thing we do in the function is a single recursive call, we shouldn't need to create an
entire stack of all the function calls…

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; }

 else { return n * factorial(n - 1); }

}

Tail Recursion

…smart compilers can often automatically convert to a loop…

79

1

2

3

4

5

public int factorial(int n) {

 int total = 1;

 for (int i = 0; i < n; i++) { total *= i; }

 return total;

}

Fibonacci

What about a function without tail recursion, or with multiple recursive calls?

What is the complexity of fib(n)?

80

1

2

3

4

public int fib(int n) {

 if(n < 2) { return 1; }

 else { return fib(n-1) + fib(n - 2); }

}

Next time…

Divide and Conquer

Recursion Trees

81

