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CSE 250: Recursion

Class Logistics

Reminders

PA1 Implementation due Sun, Sept 22 at 11:59 PM

Implement a Sorted Linked List

WA2 to be released this weekend
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CSE 250: Recursion

Recap

ArrayList

ArrayList: An array with empty space at the end.

add(v)

Use an empty slot if one is available

When you run out of space, double the size.

add(idx, v)

As add, but shift elements ≥ idx right one space first.

remove(idx)

Shift elements > idx left one spot.
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Recap

Huh?

Despicable Me;©2010 Universal Pictures
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Recap

Amortized Runtimes

Tadd(N) =

{
θ(1) if capacity > size

θ(N) otherwise

Tadd(N) ∈ O(N)

Any one call could be O(N)

But the O(N) case happens rarely.

... rarely enough (with doubling) that the expensive call
amortizes over the cheap calls.
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CSE 250: Recursion

Recap

ArrayList

Double the size

Copy 2i elements
Get 2i − 1 θ(1) freebie inserts

Contrast with always adding k slots

Copy k · i elements
Get k θ(1) freebie inserts

When doubling, the time you have to ’pay off’ your card grows with the
amount that goes on the card.
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Recap

Amortized Runtime

The tight unqualified upper bound on add(i) is O(N)
Any one call to add(i) could take up to O(N).

The tight amortized upper bound on add(i) is O(1)
N calls to add(i) average out to O(1) each.
(O(N) for all N calls)

(Amortized lets you use a credit card, as long as you pay it off)
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Recursion

Recursion
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Recursion

Recursion

https://www.etsy.com/listing/916447505/ukrainian-nesting-doll-nesting-dolls
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Recursion

Algorithms

Big Problem

Little Problem Little Problem Little Problem

Recursive Algorithm: When the little problem is the same as the
big problem, just smaller.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Recursion

Algorithms

Big Problem

Little Problem Little Problem Little Problem

Recursive Algorithm: When the little problem is the same as the
big problem, just smaller.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Recursion
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439! = 439 · 438 · 437 · 436 · 435 · 434 · 433 · 432 · . . .
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Recursion

Factorial

439! = 439 · 438 · 437 · 436 · 435 · 434 · 433 · 432 · . . .
= 439 · 438!

438! = 438 · 437 · 436 · 435 · 434 · 433 · 432 · . . .
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Recursion

Factorial

N! = N · (N − 1)!

N!︸︷︷︸
big problem

= N · (N − 1)!︸ ︷︷ ︸
smaller (same) problem

1 public long factorial(long N)

2 {

3 return N * factorial(N-1);

4 }

StackOverflowError
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Recursion

Factorial

1! = 1

N! = N · (N − 1)!

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }
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Recursion

Factorial

1! = 1 Base Case

N! = N · (N − 1)!
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Recursion

Fibonacci

1, 1,

2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
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Recursion

Fibonacci

1, 1, 2, 3,

5, 8, 13, 21, 34, 55, 89, . . .
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Recursion

Fibonacci

1, 1, 2, 3, 5,

8, 13, 21, 34, 55, 89, . . .
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Recursion

Fibonacci

Fib(0) = 1

Fib(1) = 1

Fib(N) = Fib(N − 1) + Fib(N − 2)

1 public long fib(long N)

2 {

3 if(n <= 1){ return 1; }

4 else { fib(n-1) + fib(n-2) }

5 }
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Recursion

Fibonacci

Fib(0) = 1 (Base Case)
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Recursion

Towers of Hanoi

Live Demo!
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Recursion

Towers of Hanoi

Task: Move n blocks from A to C

Base Case (n = 1)

1 Move the Block from A to C

Base Case (n ≥ 2)

1 Move n − 1 blocks from A to B

2 Move the n’th block from A to C

3 Move n − 1 blocks from B to C
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Recursion

Towers of Hanoi

1 public void move(Tower from, Tower to, Tower other, int n)

2 {

3 if(n == 1)

4 {

5 from.moveOneTo(to);

6 }

7 else

8 {

9 move(from, other, to, n-1);

10 from.moveOneTo(to);

11 move(other, to, from, n-1);

12 }

13 }
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Complexity and Recursion

How do we compute the complexity of recursive algorithms?
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Complexity and Recursion

Factorial

What is the complexity of Factorial?

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Tfactorial(N) =

{
θ(1) if N ≤ 1

θ(1)+??? otherwise

Runtime growth functions have base and recursive cases too.
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Complexity and Recursion

Factorial

Tfactorial(N) =

{
θ(1) if N ≤ 1

θ(1) + Tfactorial(N − 1) otherwise

Solve for Tfactorial(N).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Induction

Solve for Tfactorial(N).
Induction

1 Generate a hypothesis.

2 Prove the hypothesis for the base case.

3 Prove the hypothesis inductively.
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Induction

Generate a Hypothesis

Hypothesis: Solve for increasing values of N

N 1 2 3 4 5 6

T (N)

1 · θ(1) 2 · θ(1) 3 · θ(1) 4 · θ(1) 5 · θ(1) 6 · θ(1)

What’s the pattern? (N · θ(1))

Hypothesis: T (N) ∈ θ(N)

There is some chigh > 0 such that T (n) ≤ chigh · n
There is some clow > 0 such that T (n) ≥ clow · n
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CSE 250: Recursion

Induction

Algebra with θ

Remember, θ(N) used in a math equation is shorthand for:
f (N) where f (N) ∈ θ(N)

So θ(1) is shorthand for some constant c .
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CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
θ(1) if N ≤ 1

θ(1) + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0
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Induction

Factorial
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?
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Induction
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c2 + Tfactorial(1)
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?
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Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Tfactorial(3)
?
≤ 3 · c

c2 + Tfactorial(2)
?
≤ 3 · c
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CSE 250: Recursion

Induction

Factorial

This is boring!

Can’t I automate the proof?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Factorial

This is boring!

Can’t I automate the proof?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Induction

1 Generate a hypothesis.

2 Prove the hypothesis for the base case.

3 Prove the hypothesis inductively.
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Induction

Induction

1 Generate a hypothesis. T (N) ∈ O(N)

2 Prove the hypothesis for the base case.

3 Prove the hypothesis inductively.
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Induction

Induction

1 Generate a hypothesis. T (N) ∈ O(N)

2 Prove the hypothesis for the base case. ∃c : T (N) ≤ c · N

3 Prove the hypothesis inductively. ...
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CSE 250: Recursion

Induction

Induction

1 Generate a hypothesis. T (N) ∈ O(N)

2 Prove the hypothesis for the base case. ∃c : T (N) ≤ c · N
3 Prove the hypothesis inductively.

Assume you’ve proved it for case N − 1
Prove that it holds for case N
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CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Assume: Tfactorial(N − 1) ≤ c · N − 1

Tfactorial(N)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ N · c

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Assume: Tfactorial(N − 1) ≤ c · N − 1

Tfactorial(N)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ N · c

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Assume: Tfactorial(N − 1) ≤ c · N − 1

Tfactorial(N)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ c + (N − 1)c

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Assume: Tfactorial(N − 1) ≤ c · N − 1

Tfactorial(N)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ c + (N − 1)c

c2
?
≤ c

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY



CSE 250: Recursion

Induction

Factorial

Tfactorial(N) =

{
c1 if N ≤ 1

c2 + Tfactorial(N − 1) otherwise

Goal: Show that Tfactorial(N) ≤ c · N for some c > 0 (N > N0)

Assume: Tfactorial(N − 1) ≤ c · N − 1

Tfactorial(N)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ N · c

c2 + Tfactorial(N − 1)
?
≤ c + (N − 1)c
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?
≤ c✓
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CSE 250: Recursion

Induction

Induction

We showed there exists a c such that...

T (1) ≤ 1 · c (Base Case)

if T (N − 1) ≤ (N − 1) · c then T (N) ≤ N · c (Inductive Proof)

So...

1 T (1) ≤ 1 · c (Base Case)

2 T (2) ≤ 2 · c (#1 + Inductive Proof)

3 T (3) ≤ 3 · c (#2 + Inductive Proof)

4 T (4) ≤ 4 · c (#3 + Inductive Proof)

5 T (5) ≤ 5 · c (#4 + Inductive Proof)

6 T (6) ≤ 6 · c (#5 + Inductive Proof)

7 ...

The proof holds for any N ≥ 1 → T (N) ∈ O(N) ✓
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T (1) ≤ 1 · c (Base Case)
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CSE 250: Recursion

Induction

Factorial

What is the complexity of Factorial?

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Answer: O(N)
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CSE 250: Recursion

Induction

Factorial

What is the complexity of Factorial?

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Answer: O(N)1

1Technically it’s θ(N), but we haven’t proven T (N) ∈ Ω(N)
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CSE 250: Recursion

Induction

Factorial

What is the complexity of Factorial?

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Answer: O(N)1

How much memory does it use?

1Technically it’s θ(N), but we haven’t proven T (N) ∈ Ω(N)
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CSE 250: Recursion

Tail Recursion

Stack Frames

Every time you call a function, it allocates some memory for local
variables (e.g., N).

This chunk of memory is called a Stack Frame.

This is where the term StackOverflowError comes from.
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CSE 250: Recursion

Tail Recursion

Stack Frames

N = 5N = 4N = 3N = 2N = 1

θ(N)
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Tail Recursion

Stack Frames

N = 5N = 4N = 3N = 2N = 1
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

1 public long factorial(long N)

2 {

3 long total = 1;

4 for(long i = N; i > 0; i--)

5 {

6 total *= i

7 }

8 return total

9 }
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CSE 250: Recursion

Tail Recursion

Factorial

Why does this work?
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Each call to factorial only makes one recursive call.
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

1 public long factorial(long N)

2 {

3 if(N <= 1){ return 1; }

4 else { return N * factorial(N-1); }

5 }

Each call to factorial only makes one recursive call.
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

Is N > 1?

Compute arg = N− 1

Call factorial(arg)

Compute N × result

Return
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

Is N > 1? �Requires stack frame

Compute arg = N− 1 �Requires stack frame

Call factorial(arg)

Compute N × result �Requires stack frame

Return
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

1 public long factorial(long N, long total)

2 {

3 if(N <= 1){ return total; }

4 else { return factorial(N-1, N * total); }

5 }
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

Is N > 1?

Compute arg1 = N− 1

Compute arg2 = N× total

Call factorial(arg1, arg2)

Return
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CSE 250: Recursion

Tail Recursion

Factorial (as a loop)

Is N > 1? �Requires stack frame

Compute arg1 = N− 1 �Requires stack frame

Compute arg2 = N× total �Requires stack frame

Call factorial(arg1, arg2)

Return �Stack frame unnecessary
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CSE 250: Recursion

Tail Recursion

Stack Frames

N = 5N = 4N = 3N = 2N = 1

θ(1)
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Tail Recursion

Stack Frames
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θ(1)
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CSE 250: Recursion

Tail Recursion

Tail Recursion

If the recursive call is the last operation before the return, most
languages optimize the recursion away.
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CSE 250: Recursion

Tail Recursion

Tail Recursion

If the recursive call is the last operation before the return, most
languages optimize the recursion away2.

2... but not Java
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CSE 250: Recursion

Tail Recursion

Tail Recursion

If the recursive call is the last operation before the return, most
languages optimize the recursion away2.

This is called Tail Recursion

2... but not Java
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CSE 250: Recursion

Tail Recursion

Fibonacci

Time permitting...
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CSE 250: Recursion

Tail Recursion

Fibonacci

What’s the complexity:

1 public long fib(long N)

2 {

3 if(n <= 1){ return 1; }

4 else { fib(n-1) + fib(n-2) }

5 }
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