
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 12: Divide and Conquer

mailto:epmikida@buffalo.edu

Announcements

● PA1 Implementation due last night, submission closes Tuesday night
● WA2 released today, due Sunday 9/29 @ 11:59PM

2

Recap

● Recursion: A big problem made up of one or more instances of a
smaller problem
○ Factorial: f(n) = n * f(n-1)
○ Fibonacci: f(n) = f(n-1) + f(n-2)
○ Towers of Hanoi: move(n) = move(n-1), move(1), move(n-1) again

● Inductive Proofs:
○ Come up with a hypothesis
○ Prove it on the base case
○ Assume it works for n' < n; Prove for n based on that assumption

3

Inductive Proof for Towers of Hanoi

● Base case is one ring. I can move one ring.
● Assume I can move n - 1 rings; Can I prove that I can move n? Yes

○ Move n - 1 (which we can do based on our assumption)
○ Move 1 ring
○ Move n - 1 (which we can do based on our assumption.
○ Therefore, if we can move n - 1, we can move n.

* Note this is just a proof that we can solve it for any value of n. The actual number of steps required can also
be shown by induction…

4

Fibonacci

What is the complexity of fib(n)?

5

1

2

3

4

public int fib(int n) {

 if(n < 2) { return 1; }

 else { return fib(n - 1) + fib(n - 2); }

}

Fibonacci

Solve for T(n)...How?

6

Divide and Conquer

Remember the Towers of Hanoi…

7

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks

8

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks

9

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks

10

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks
4. You can move n-3 blocks if you know how to move n-4 blocks

11

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks
4. You can move n-3 blocks if you know how to move n-4 blocks

…

You can always move 1 block

12

Divide and Conquer

To solve the problem at n:

13

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

14

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Conquer the smaller problems

15

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Conquer the smaller problems

Combine the smaller solutions to get the bigger solution

16

Merge Sort

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.

17

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort?

18

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

19

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it?

20

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

21

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array)
How can I do this, and how long does it take?

22

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array)
How can I do this, and how long does it take? Merge…

23

How do we Merge Two Sorted Arrays?

15 31 55 61 88

24 37 62 73 95

24

How do we Merge Two Sorted Arrays?

31 55 61 88

24 37 62 73 95

15
25

How do we Merge Two Sorted Arrays?

31 55 61 88

37 62 73 95

2415
26

How do we Merge Two Sorted Arrays?

55 61 88

37 62 73 95

2415 31
27

How do we Merge Two Sorted Arrays?

55 61 88

62 73 95

24 3715 31
28

How do we Merge Two Sorted Arrays?

88

62 73 95

24 3715 31 55

61

29

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55

62

30

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55 62
31

How do we Merge Two Sorted Arrays?

88

95

24 37 6115 31 55 62 73
32

How do we Merge Two Sorted Arrays?

95

24 37 61 8815 31 55 62 73
33

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95
34

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

35

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

Each comparison was 𝚯(1)...

36

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

Each comparison was 𝚯(1)...

How many comparisons? 𝚯(|red| + |blue|)

37

Divide

● We know how to combine sorted arrays
● We know that in a base case of n = 1 how to sort
● How do we divide our problem to get there?

38

Divide

● We know how to combine sorted arrays
● We know that in a base case of n = 1 how to sort
● How do we divide our problem to get there?

Let's divide our array in half (recursively)!

39

Visualization - Divide

40

Visualization - Divide

Divide the input in half

41

Visualization - Divide

Divide each half in half

42

Visualization - Divide

Divide each half in
half again…

43

Visualization - Conquer

Divide each half in
half again…

We can't divide in half anymore (base case) 44

Visualization - Combine

45

Visualization - Combine

Each single item list is
sorted…merge each

pair into a bigger
sorted list

46

Visualization - Combine

Merge each pair of 2
into sorted lists of

size 4

47

Visualization - Combine

One more merge gets our
original list fully sorted

48

Complexity

If we solve a problem of size n by:

● Dividing it into a sub-problems
○ Where each problem is of size n/b (usually b = a)
○ …and stop recurring at n ≤ c
○ …and the cost of dividing is D(n)
○ …and the cost of combining is C(n)

Then our total cost will be…

49

Complexity

a subproblems of size n/b, base case of n ≤ c
divide cost of D(n)

and combine cost of C(n)

50

Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can we do it faster?)

Conquer: Sort left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

51

Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can we do it faster? 𝚯(1) for ArrayList)

Conquer: Sort left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

52

Merge Sort

53

Merge Sort

How do we find a closed-form hypothesis?

54

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

55

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

56

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

57

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

What is the total cost of each level?

58

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

What is the total cost of each level? 𝚯(n)

59

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

What is the total cost of each level? 𝚯(n)

60

How many levels are there?
How many times can we divide n in half?

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

Because we divide
in half at each
level, we have

log(n) levels

log(n)

Hypothesis: The cost of merge sort is n log(n)
61

What is the total cost of each level? 𝚯(n)

Merge Sort: Recursion Tree Details

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

62

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

63

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

64

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

65

Merge Sort Runtime

66

Merge Sort Runtime

67

Merge Sort Runtime

68

Merge Sort Runtime

69

Merge Sort Runtime

70

Merge Sort Runtime

71

Merge Sort Runtime

72

Merge Sort Runtime

73

Merge Sort Runtime: Inductive Proof

Now we can use induction to prove that there is a c, n0 s.t. T(n) ≤ c nlog(n)
for any n > n0

74

Merge Sort Runtime: Inductive Proof

Base Case: T(1) ≤ c 1 log(1)

c0 ≤ 0

T(2) ≤ c 2 log(2)

True for any c > c0 / 2

75

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

76

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

77

How did we choose
our smaller problem
size?

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

78

How did we choose
our smaller problem
size?

Our runtime for n
relies on the runtime
for n/2

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

79

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

80

This matches the left hand side of our assumption!
We can substitute the right hand side, and use transitivity

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

81

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

82

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

83

Merge Sort Runtime: Inductive Proof

84

Merge Sort Runtime: Inductive Proof

85

Merge Sort Runtime: Inductive Proof

Which is true for any

and

86

Next Time…

Quick Sort

Average Runtime

87

