CSE 250: Midterm Review 1 Lecture 16

Oct 2, 2024

Exam Day

- **Do** bring...
 - Writing implement (pen or pencil)
 - One note sheet (up to $8\frac{1}{2} \times 11$ inches, double-sided)
- **Do not** bring...
 - Bag (you will be asked to leave it at the front of the room)
 - Computer/Calculator/Watch/etc...
- Wait outside before the exam starts so we can prepare.
 - You will be told when to enter.
- There will be assigned seating.
 - Seating charts will be posted on the doors and projector.
 - See the seat numbers on the chairs.

Runtime

Some Notation

- N: The input "size"
 - How many students I have to email.
 - How many streets on a map.
 - How many key/value pairs in my dictionary
- T(N): The runtime of 'some' implementation of the algorithm.
 - Some... correct implementation.

We care about the "shape" of T(N) when you plot it.

Class Names

```
T(N) \in \dots

• \dots \theta(1): Constant

• \dots \theta(\log(N)): Logarithmic

• \dots \theta(N): Linear

• \dots \theta(N\log(N)): Log-Linear

• \dots \theta(N^2): Quadratic

• \dots \theta(N^k) (for any k \ge 1): Polynomial

• \dots \theta(2^N): Exponential
```

f and g are in the same complexity class if:

- **g** is bounded from above by something f-shaped $g(N) \in O(f(N))$
- g is bounded from below by something f-shaped $g(N) \in \Omega(f(N))$

Complexity Classes

- O(f(N)) includes:
 - All functions in $\theta(f(N))$
 - All functions in 'smaller' complexity classes
- - All functions in $\theta(f(N))$
 - All functions in 'bigger' complexity classes

$$O(f(N)) \cap \Omega(f(N)) = \theta(f(N))$$

Rules of Thumb

© Aleksandra Patrzalek, 2012

 $g(N) \in O(f(N))$ (f is an upper bound for g) if and only if:

- You can pick an N_0
- You can pick a c
- For all $N > N_0$: $g(N) \le c \cdot f(N)$

 $g(N) \in \Omega(f(N))$ (f is a lower bound for g) if and only if:

- You can pick an N_0
- You can pick a c
- For all $N > N_0$: $g(N) \ge c \cdot f(N)$

 $g(N) \in \theta(f(N))$ if and only if:

- $g(N) \in \Omega(f(N))$
- $g(N) \in O(f(N))$

Rules of Thumb

$$F(N) = f_1(N) + f_2(N) + \ldots + f_k(N)$$

What complexity class is F(N) in?

$$f_1(N) + f_2(N)$$
 is in the greater of $\theta(f_1(N))$ and $\theta(f_2(N))$.

F(N) is in the greatest of any $\theta(f_i(N))$

We say the biggest f_i is the dominant term.

Multi-Class Functions

$$T(N) = \begin{cases} \theta(1) & \text{if } N \text{ is even} \\ \theta(N) & \text{if } N \text{ is odd} \end{cases}$$

What is the complexity class of T(N)?

- $T(N) \in O(N)$ is a **tight** bound.
- $T(N) \in \Omega(1)$ is a **tight** bound.

Multi-Class Functions

$$T(N) = egin{cases} heta(1) & ext{if } N ext{ is even} \ heta(N) & ext{if } N ext{ is odd} \end{cases}$$

What is the complexity class of T(N)?

- $T(N) \in O(N)$ is a **tight** bound.
- $T(N) \in \Omega(1)$ is a **tight** bound.

If the tight Big-O and Big- Ω bounds are different, the function is not in ANY complexity class. (Big-Theta doesn't exist).

Does Big-Theta Exist?

```
N+2N^2 belongs to one complexity class. (\theta(N^2)) 5N+10N^2+2^N belongs to one complexity class (\theta(2^N)) \begin{cases} 2^N & \text{if } \mathrm{rand}() > 0.5 \\ N & \text{otherwise} \end{cases} does not belong to one complexity class.
```

Does Big-Theta Exist?

```
N+2N^2 belongs to one complexity class. (\theta(N^2)) 5N+10N^2+2^N belongs to one complexity class (\theta(2^N)) \begin{cases} 2^N & \text{if } \mathrm{rand}() > 0.5 \\ N & \text{otherwise} \end{cases} does not belong to one complexity class.
```

- Usually $\theta(f_1(N) + f_2(N) + ...)$ is based on the dominant term
- If you see cases (i.e., '{'), it's probably multi-class.

Multi-Class Functions

If...

- $g(N) \in O(f(N))$ is a **tight** upper bound
- $g(N) \in \Omega(f(N))$ is a **tight** lower bound
- $f(N) \notin \theta(f(N))$

... then there is no θ bound for g(N) (g is multi class)

Remember: Addition does <u>not</u> make a function multi-class.

(A tight $\Omega(f(N))$ is the dominant (biggest) term being summed)

Rules of Thumb

- Lines of Code: Add Complexities
- Loops: Multiply Complexity by the Loop Count
- **If/Then**: Cases block '{'

```
public void bubblesort(List[Integer] data)
1
2
          int N = data.size();
3
         for(int i = N - 2; i >= 0; i--)
4
5
            for(int j = i; j \le N - 1; j++)
6
7
              if(data.get(j+1) < data.get(j))</pre>
9
                int temp = data.get(j);
10
                data.set(j, data.get(j+1));
11
                data.set(j+1, temp);
12
13
14
15
16
```

```
public void bubblesort(List[Integer] data)
{
    O(N³)
}
```

```
public void bubblesort(List[Integer] data)

{
   int[] array = data.toArray()
   bubblesort(array) // Use the array implementation
   data.clear()
   data.addAll(Arrays.toList(array))
}
```

```
public void bubblesort(List[Integer] data)

{
      O(N)
      O(N<sup>2</sup>)
      O(N)
      O(N)
```

Abstract Data Types

Abstract Data Type defines...

- Domain: What kind of data is stored? (e.g., elements, key/value pairs)
- Constraints: How are items related? (e.g., ordered keys)
- Operations: How can the data be accessed/modified (e.g., 'i'th item)

Like a Java interface¹

 $^{^{1}\}mathsf{The}$ term interface is not quite the same as ADT; The interface only formalizes the permitted operations.

The Sequence ADT

```
public interface Sequence<E>
{
   public E get(int idx);
   public void set(int idx, E value);
   public int size();
   public Iterator<E> iterator();
}
```

E is the type of thing in the Sequence.

CSE 220 Crossover

Array

- public E get(int idx)
 - Return bytes bPE \times *idx* to bPE \times (*idx* + 1) 1
 - ullet $\theta(1)$ (if we treat bPE as a constant)
- public void set(int idx, E value)
 - Update bytes bPE \times *idx* to bPE \times (*idx* + 1) − 1
 - ullet $\theta(1)$ (if we treat bPE as a constant)
- public int size()
 - Return size
 - θ(1)

CSE 220 Crossover 2: List Harder

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

LinkedList

- public E get(int idx)
 - Start at head, and move to the next element idx times. Return the element's value.
 - \bullet $\theta(idx)$, O(N)
- public void set(int idx, E value)
 - Start at head, and move to the next element idx times. Update the element's value.
 - \bullet $\theta(idx)$, O(N)
- public int size()
 - Start at head, and move to the next element until you reach the end. Return the number of steps taken.
 - θ(N)

Linked Lists' size

Can we do better?

Store size

```
public class LinkedList<T> implements List<T>
{
    LinkedListNode<T> head = null;
    int size = 0;
    /* ... */
}
```

- How expensive is public int size() now? $(\theta(1))$
- How expensive is it to <u>maintain</u> size? (Extra $\theta(1)$ work on insert/remove).

Store size

```
public class LinkedList<T> implements List<T>
{
    LinkedListNode<T> head = null;
    int size = 0;
    /* ... */
}
```

- How expensive is public int size() now? $(\theta(1))$
- How expensive is it to <u>maintain</u> size? (Extra $\theta(1)$ work on insert/remove).

Storing redundant information can reduce complexity.

Enumeration

```
public int sumUpList(LinkedList<Integer> list)
1
2
         int total = 0:
         int N = list.size()
         Optional<LinkedListNode<Integer>> node = list.head;
5
         while(node.isPresent())
6
7
           int value = node.get().value;
           total += value;
9
           node = node.get().next;
10
11
         return total;
12
13
```

Enumeration

This code is specialized for LinkedLists

- We can't re-use it for an ArrayList.
- If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

We need a way to represent a reference to the idx'th element of a list.

ListIterator

```
public interface ListIterator<E>
{
    public boolean hasNext();
    public E next();
    public boolean hasPrevious();
    public E previous();
    public E previous();
    public void add(E value);
    public void set(E value);
    public void remove();
}
```

Linked Lists

Access list element by index: O(N)

Access list element by reference (iterator): O(1)

The List ADT

```
public interface List<E>
1
       extends Sequence <E> // Everything a sequence has, and...
2
3
       /** Extend the sequence with a new element at the end */
4
       public void add(E value);
5
6
       /** Extend the sequence by inserting a new element */
7
       public void add(int idx, E value);
9
       /** Remove the element at a given index */
10
       public void remove(int idx);
11
12
```


array.data

array.add(idx= 2, value= 5) $\leftarrow \theta(N)$

Idea 1

Idea: Allocate more memory than we need.

ArrayList

Start with a capacity of 2.

```
\theta(1)
                                                                  (size now 1)
\theta(1)
                                                                  (size now 2)
2 \cdot \theta(1)
                                              (capacity now 4; size now 3)
\theta(1)
                                                                  (size now 4)
\mathbf{5} \mathbf{4} \cdot \theta(1)
                                              (capacity now 8; size now 5)
\theta(1)
                                                                  (size now 6)
\theta(1)
                                                                  (size now 7)
\theta(1)
                                                                  (size now 8)
98 \cdot \theta(1)
                                            (capacity now 16; size now 9)
```

...8 more operations before next $\theta(N)$

...16 more operations before next $\theta(N)$

ArrayList

- \blacksquare 2 insertions at $\theta(1)$
- $2 \cdot \theta(1)$ plus 2 insertions at $\theta(1)$ (up to capacity of 4)
- $4 \cdot \theta(1)$ plus 4 insertions at $\theta(1)$ (up to capacity of 8)
- $8 \cdot \theta(1)$ plus 8 insertions at $\theta(1)$ (up to capacity of 16)
- $16 \cdot \theta(1)$ plus 16 insertions at $\theta(1)$ (up to capacity of 32)
- $32 \cdot \theta(1)$ plus 32 insertions at $\theta(1)$ (up to capacity of 64)
- **...**

What's the pattern?

 $(2^i \cdot \theta(1))$ copy on the 2^i th insertion)

For N insertions, how many copies do we perform? $(\log_2(N))$

Huh?

Despicable Me; ©2010 Universal Pictures

$$T_{add}(N) = egin{cases} heta(1) & ext{if } capacity > size \ heta(N) & ext{otherwise} \end{cases}$$

$$T_{add}(N) = \begin{cases} \theta(1) & \text{if } capacity > size \\ \theta(N) & \text{otherwise} \end{cases}$$

$$T_{add}(N) \in O(N)$$

$$T_{add}(N) = \begin{cases} \theta(1) & \text{if } capacity > size \\ \theta(N) & \text{otherwise} \end{cases}$$

$$T_{add}(N) \in O(N)$$

- Any **one** call could be O(N)
- But the O(N) case happens rarely.

$$T_{add}(N) = \begin{cases} \theta(1) & \text{if } capacity > size \\ \theta(N) & \text{otherwise} \end{cases}$$

$$T_{add}(N) \in O(N)$$

- Any **one** call could be *O(N)*
- But the O(N) case happens rarely.
 - ... rarely enough (with doubling) that the expensive call amortizes over the cheap calls.

LinkedList vs ArrayList

```
for(i = 0; i < N; i++)

list.add(i);
}</pre>
```

	LinkedList	ArrayList
add(i) once	O(1)	O(N)
add(i) N times	O(N)	<i>O</i> (<i>N</i>)

LinkedList vs ArrayList

```
for(i = 0; i < N; i++)

list.add(i);
}</pre>
```

	LinkedList	ArrayList
add(i) once	O(1)	O(N)
add(i) N times	O(N)	O(N)

 $\label{eq:arrayList.add(i)} \textbf{behaves like it's } \textit{O}(1), \\ \underline{\textbf{but only when it's in a loop}}.$

- The tight upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

- The tight upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

- The tight upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

- The tight upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

- The tight upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

- The tight <u>unqualified</u> upper bound on add(i) is O(N) Any one call to add(i) could take up to O(N).
- The tight <u>amortized</u> upper bound on add(i) is O(1) N calls to add(i) average out to O(1) each. (O(N) for all N calls)

If T(N) runs in amortized O(f(N)), then:

$$\sum_{i=0}^{N} T(N) = N \cdot O(f(N)) = O(N \cdot f(N))$$

Even if $T(N) \notin O(f(N))$

- Unqualified Bounds: Always true (no qualifiers)
- **Amortized Bounds**: Only valid in $\sum_{i=0}^{N} T(i)$
 - One call may be expensive, many calls average out cheap

List Runtimes

Ор	Array	ArrayList	Linked List (by idx)	Linked List (by iter)
get(i)	$\theta(1)$	heta(1)	$\theta(i), O(N)$	heta(1)
set(i,v)	$\theta(1)$	heta(1)	$\theta(i), O(N)$	heta(1)
add(v)	θ(N)	Amm. $\theta(1)$	heta(1)	heta(1)
add(i,v)	θ(N)	$\theta(N)$	$\theta(i), O(N)$	heta(1)
remove(i)	θ(N)	heta(1) $ heta(1)$ Amm. $ heta(1)$ $ heta(N)$ $ heta(N)$	$\theta(i), O(N)$	heta(1)

N elements

$$\left(\sum_{i=0}^{\log(\mathit{N})-1} 2^i \cdot \theta(1)\right) + \left(\sum_{i=1}^{\log(\mathit{N})-1} \theta(\mathit{N})\right)$$

$$\left(\sum_{i=0}^{\log(N)-1} 2^i \cdot \theta(1) \right) + \left(\sum_{i=1}^{\log(N)-1} \theta(N) \right)$$

$$\left(2^{\log(N)} \theta(1) \right) + (\log(N) \theta(N))$$

$$\begin{pmatrix} \log(N) - 1 \\ \sum_{i=0}^{\log(N) - 1} 2^i \cdot \theta(1) \end{pmatrix} + \begin{pmatrix} \log(N) - 1 \\ \sum_{i=1}^{\log(N) - 1} \theta(N) \end{pmatrix}$$
$$\begin{pmatrix} 2^{\log(N)} \theta(1) \end{pmatrix} + (\log(N) \theta(N))$$
$$\theta(N) + \theta(N \log(N))$$

$$\begin{pmatrix} \sum_{i=0}^{\log(N)-1} 2^i \cdot \theta(1) \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{\log(N)-1} \theta(N) \end{pmatrix}$$

$$\begin{pmatrix} 2^{\log(N)}\theta(1) \end{pmatrix} + (\log(N)\theta(N))$$

$$\theta(N) + \theta(N\log(N))$$

Merge Sort: $\theta(N \log(N))$

$$\begin{pmatrix} \sum_{i=0}^{\log(N)-1} 2^i \cdot \theta(1) \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{\log(N)-1} \theta(N) \end{pmatrix}$$

$$\begin{pmatrix} 2^{\log(N)}\theta(1) \end{pmatrix} + (\log(N)\theta(N))$$

$$\theta(N) + \theta(N\log(N))$$

Merge Sort: $\theta(N \log(N))$

Bubble Sort: $\theta(N^2)$