CSE 250: Midterm Review 1

CSE 250: Midterm Review 1

Lecture 16

Oct 2, 2024

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Class Logistics

Exam Day

m Do bring...

m Writing implement (pen or pencil)

m One note sheet (up to 83 x 11 inches, double-sided)
= Do not bring...

m Bag (you will be asked to leave it at the front of the room)
m Computer/Calculator/Watch/etc...

m Wait outside before the exam starts so we can prepare.
m You will be told when to enter.
m There will be assigned seating.

m Seating charts will be posted on the doors and projector.
m See the seat numbers on the chairs.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Runtime

Alg. 2 Alg. 1

Alg. 3

Training Time (s)

|

Number of Training Examples

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 [sing]One of these is not like the others par Q: Why are algorithms 1 and 2 the same, and what makes algorithm 3 different? par Both 1 and 2 is a quadratic equation, while 3 is linear. par After the number training examples gets big enough, algorithm 3 will *always* be faster.

CSE 250: Midterm Review 1
LComplexity

Some Notation

m N: The input "size"
m How many students | have to email.
m How many streets on a map.
m How many key/value pairs in my dictionary

m T(N): The runtime of 'some’ implementation of the
algorithm.
m Some... correct implementation.

We care about the "shape” of T(N) when you plot it.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 Ok, let's try to pin down what we mean. - We definitely need to care about how "big" the input is, so let's give that a name 'N'. - What exacly is N? Well it depends on what the algorithm is doing. Say I'm sending an email to everyone in the class. N might be the number of students enrolled? If my phone is trying to compute directions, maybe I care about the number of streets I need to search. - So what's on the y-axis? Well, we care about the runtime algorithm, but that means we need to talk about an implementation of the algorithm. Let's call that T(N) - we don't want to talk about a specific implementation in the 50k-ft view, but bear with me for a moment - it should go without saying that the implementation should be 'correct'. - The key idea is that if you squint, any implementation... any T(N) should have the same "shape".

CSE 250: Midterm Review 1
LComplexity

G ESREINES

] ...9(1) Constant
m ...0(log(N)): Logarithmic
(N): Linear
.0(Nlog(N)): Log-Linear
(
(
(

H B
> D

® ... 0(N?): Quadratic
m ...0(NK) (for any k> 1): Polynomial
m ...0(2V): Exponential

 The classes are listed in order

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

fand g are in the same complexity class if:
m g is bounded from above by something fshaped
g(N) € O(f(N)
m g is bounded from below by something fshaped
g(N) € Q(f(N)

CSE 250: Midterm Review 1
LComplexity

Complexity Classes

6(Nlog(N))

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

m O(f{N)) includes:

m All functions in 8(f(N))
m All functions in 'smaller’ complexity classes

m Q(f(N)) includes:

m All functions in §(AN))
m All functions in 'bigger’ complexity classes

O(f(N)) N Q(AN)) = 6(fAN))

 'slower-growing' is a bit awkward; if f(N) is a runtime, then slower-growing means the algorithm runs faster. So, since it sort of means the same thing, we'll say 'smaller' instead.

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Rules of Thumb

D

© Aleksandra Patrzalek, 2012

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Complexity Bounds

g(N) € O(f{N)) (fis an upper bound for g) if and only if:
® You can pick an Ny
m You can pick a ¢

m For all N> Ng: g(N) < c- f{N)

g(N) € Q(f{N)) (fis a lower bound for g) if and only if:
m You can pick an Ny
m You can pick a ¢

m For all N> Np: g(N) > c- f(N)

g(N) € 6(fN)) if and only if:
= g(N) € Q(f(N))
= g(N) € O(f(N))

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Rules of Thumb

F(N) = fi(N) + K(N) + ... + fi(N)
What complexity class is F(N) in?

fi(N) + f2(N) is in the greater of 6(f1(N)) and 6(f2(N)).
F(N) is in the greatest of any 6(f;(N))

We say the biggest f; is the dominant term.

CSE 250: Midterm Review 1
LComplexity

Multi-Class Functions

(V) = 6(1) if Nis even
O(N) if Nis odd
What is the complexity class of T(N)?
m T(N) € O(N) is a tight bound.
m T(N) € Q(1) is a tight bound.

CSE 250: Midterm Review 1
LComplexity

Multi-Class Functions

(V) = 6(1) if Nis even
O(N) if Nis odd
What is the complexity class of T(N)?
m T(N) € O(N) is a tight bound.
m T(N) € Q(1) is a tight bound.

If the tight Big-O and Big-Q2 bounds are different,
the function is not in ANY complexity class.
(Big-Theta doesn’t exist).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Does Big-Theta Exist?

N + 2N\? belongs to one complexity class. (6(N?))
5N + 10N? + 2N belongs to one complexity class (8(2V))

{2N if rand() > 0.5

. does not belong to one complexity class.
N otherwise

CSE 250: Midterm Review 1
LComplexity

Does Big-Theta Exist?

N + 2N\? belongs to one complexity class. (6(N?))
5N + 10N? + 2N belongs to one complexity class (8(2V))

2N if rand () > 0.5 .
. does not belong to one complexity class.
N otherwise

m Usually 0(f(N) + f(N) +...) is based on the dominant term

m If you see cases (i.e., ‘{’), it’s probably multi-class.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1
LComplexity

Multi-Class Functions

If...

m g(N) € O(f{N)) is a tight upper bound

m g(N) € Q(7(N)) is a tight lower bound

= 7(N) € 0(N))
... then there is no 6 bound for g(N) (g is multi class)
Remember: Addition does not make a function multi-class.

(A tight Q(f{N)) is the dominant (biggest) term being summed)

CSE 250: Midterm Review 1
LComplexity

Rules of Thumb

m Lines of Code: Add Complexities
m Loops: Multiply Complexity by the Loop Count
m If/Then: Cases block ‘{’

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Bubblesort on Lists

© 00 N O O W N =

e e e e =
D A W N = O

public void bubblesort(List[Integer] data)
{
int N = data.size();
for(int i = N - 2; i >= 0; i--)
{
for(int j = i; j <= N - 1; j++)
{
if (data.get(j+1) < data.get(j))
{
int temp = data.get(j);
data.set(j, data.get(j+1));
data.set(j+1, temp);
}
}
}
}

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Bubblesort on Lists

public void bubblesort(List[Integer] data)
{

(W)
}

W N =

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Bubblesort on Lists

public void bubblesort(List[Integer] data)
{
int[] array = data.toArray()
bubblesort(array) // Use the array implementation
data.clear()
data.addAll(Arrays.toList(array))

N O g R W N =

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Bubblesort on Lists

public void bubblesort(List[Integer] data)
{

O(N)

O(N?)

Oo(N)

O(N)

N O g s W N =

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Abstract Data Types

Abstract Data Type defines...

m Domain: What kind of data is stored? (e.g., elements,
key/value pairs)

m Constraints: How are items related? (e.g., ordered keys)

m Operations: How can the data be accessed/modified (e.g.,
‘i"th item)

Like a Java interfacel

1The term interface is not quite the same as ADT; The interface only
formalizes the permitted operations.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

The Sequence ADT

public interface Sequence<E>
{
public E get(int idx);
public void set(int idx, E value);
public int size();
public Iterator<E> iterator();

N O g R W N =

}

E is the type of thing in the Sequence.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

CSE 220 Crossover

0100100001100101011011000110110001101111...
[

01001000 01100101 01101100 01101100 01101111

IS A I e I B I

Fixed number of elements

J
wle T[T o]

Fixed element size

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://freesvg.org/random-access-computer-memory-ram-vector-image

CSE 250: Midterm Review 1

L Sequences, Lists

Array

m public E get(int idx)

m Return bytes bPE X jdx to bPE X (idx+ 1) —1
m 0(1) (if we treat bPE as a constant)

m public void set(int idx, E value)
m Update bytes bPE X idx to bPE X (idx+ 1) — 1
m 0(1) (if we treat bPE as a constant)

® public int size()

m Return size

m 4(1)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

 We'll talk about iterators in later lectures.

CSE 250: Midterm Review 1

L Sequences, Lists

CSE 220 Crossover 2: List Harder

01001000 10000011 p000000¢ 01101111 10000111 |-

| H | 131 | | e | @135 |

4
HF— e —{ 17— 1T — o]

OpenClipArt: https://freesvg.org/random-access-computer-memory-ram-vector-image

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

https://freesvg.org/random-access-computer-memory-ram-vector-image

CSE 250: Midterm Review 1

L Sequences, Lists

LinkedList

m public E get(int idx)
m Start at head, and move to the next element idx times.
Return the element’s value.
m 0(idx), O(N)
m public void set(int idx, E value)
m Start at head, and move to the next element idx times.
Update the element’s value.
m 0(idx), O(N)
m public int size()
m Start at head, and move to the next element until you reach

the end. Return the number of steps taken.
= O(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Linked Lists' size

Can we do better?

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Store size

public class LinkedList<T> implements List<T>
{

LinkedListNode<T> head = null;

int size = 0;

VA V4
}

D Ut R W N =

m How expensive is public int size() now?
(0(1))

m How expensive is it to maintain size?
(Extra 6(1) work on insert/remove).

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Store size

public class LinkedList<T> implements List<T>
{

LinkedListNode<T> head = null;

int size = 0;

VA V4
}

D Ut R W N =

m How expensive is public int size() now?
(0(1))

m How expensive is it to maintain size?
(Extra 6(1) work on insert/remove).

Storing redundant information can reduce complexity. J

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Enumeration

public int sumUpList(LinkedList<Integer> list)
{
int total = 0;
int N = list.size()
Optional<LinkedListNode<Integer>> node = list.head;
while(node.isPresent())
{
int value = node.get().value;
total += value;
node = node.get() .next;
}

return total;

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Enumeration

This code is specialized for LinkedLists
m We can't re-use it for an ArrayList.

m If we change LinkedList, the code breaks.

How do we get code that is both fast and general?

m We need a way to represent a reference to the idx'th element
of a list.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Listlterator

{

public
public
public
public
public
public
public

public interface ListIterator<E>

boolean hasNext();

E next();

boolean hasPrevious();
E previous();

void add(E value);
void set(E value);
void remove();

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Linked Lists

Access list element by index: O(N)

Access list element by reference (iterator): O(1)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

The List ADT

1 public interface List<E>

2 extends Sequence<E> // Everything a sequence has, and...
3| {

4 /** Extend the sequence with a new element at the end */
5 public void add(E value);

6

7 /*% Extend the sequence by inserting a new element */

8 public void add(int idx, E value);

9

10 /*% Remove the element at a given index */

11 public void remove(int idx);

12}

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2]3]4]

array.data

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2]3]4]

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| ofafefsfaf [T T 111}

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| ofsf2fsfaf Jof [[|||

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| ofsf2fsfaf Jofuf [|||

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2fs]a] Jofuf2] | | |

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2]s]4a] Jofi]2] |a] |

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2]s]4a] Jofi]2] [a]a]

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| of1]2]s]4] Jofi]2]s]|a]4]

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| jof1]2]s]4] Jofi]2]s]|a]4]

array.data

array.add(idx= 2, value= 5)

CSE 250: Midterm Review 1

L Sequences, Lists

Array add(idx, value)

| Jolt]2]5]3[4]

array.data

array.add(idx= 2, value= 5) <—60(N)

CSE 250: Midterm Review 1

L Sequences, Lists

ldea 1

Idea: Allocate more memory than we need.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

ArrayList

Start with a capacity of 2.

6(1) (size now 1)
0(1) (size now 2)
2-0(1) (capacity now 4; size now 3)
6(1) (size now 4)
4.0(1) (capacity now 8; size now 5)
@A (1) (size now 6)
0(1) (size now 7)
A 0(1) (size now 8)
| 8-6(1) (capacity now 16; size now 9)

..8 more operations before next §(N)
..16 more operations before next 6(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

L Sequences, Lists

ArrayList

m 2 insertions at 6(1)

2-6(1) plus 2 insertions at (1) (up to capacity of 4)
4-60(1) plus 4 insertions at 6(1) (up to capacity of 8)
8- 0(1) plus 8 insertions at 6(1) (

up to capacity of 16)

16 - 6(1) plus 16 insertions at #(1) (up to capacity of 32)
32-6(1) plus 32 insertions at §(1) (up to capacity of 64)
n ..

What's the pattern?
(27- 6(1) copy on the 2"'th insertion)

For N insertions, how many copies do we perform?
(loga(NV))

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

Huh?

add(i)
N times

Despicable Me; ©2010 Universal Pictures

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtimes

0(1) if capacity > size
6(N) otherwise

Tadd(N) = {

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtimes

0(1) if capacity > size
6(N) otherwise

Tadd(N) = {

Tadd(N) € O(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtimes

0(1) if capacity > size
6(N) otherwise

Tadd(N) = {

Tadd(N) € O(N)
= Any one call could be O(N)
m But the O(N) case happens rarely.

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtimes

0(1) if capacity > size
6(N) otherwise

Tadd(N) = {

Tadd(N) € O(N)
= Any one call could be O(N)

m But the O(N) case happens rarely.

m ... rarely enough (with doubling) that the expensive call
amortizes over the cheap calls.

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

LinkedList vs ArrayList

1 for(i = 0; i < N; i++)
2 {

3 list.add(i);

4 }

LinkedList ArrayList

add (i) once o(1) O(N)

add (i) N times O(N) O(N)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

LinkedList vs ArrayList

1 for(i = 0; 1 < N; i++)
2 {

3 list.add(i);

4 }

LinkedList ArrayList

add (i) once o(1) O(N)

add (i) N times O(N) O(N)

ArrayList.add(i) behaves like it’'s O(1), but only when it’s in a loop. J

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m The tight unqualified upper bound on add (i) is O(N)
Any one call to add(i) could take up to O(N).
m The tight amortized upper bound on add (i) is O(1)

N calls to add (i) average out to O(1) each.
(O(N) for all N calls)

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

If T(N) runs in amortized O(f(N)), then:
N
Y T(N)= N-O(fN))= O(N-fN))
i=0

Even if T(N) ¢ O(f(N))

CSE 250: Midterm Review 1

LAmortized Runtime

Amortized Runtime

m Unqualified Bounds: Always true (no qualifiers)

m Amortized Bounds: Only valid in Z,{io T(i)
m One call may be expensive, many calls average out cheap

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LAmortized Runtime

List Runtimes

Op Array Arraylist Linked List (by idx) Linked List (by iter)
get (i) | 0(1) o(1) o(i), O(N) 0(1)
set(i,v) | 6(1) o(1) o(i), O(N) o(1)
add(v) | O(N) Amm. 6(1) 0(1) 0(1)
add(i,v) | O(N) 6(N) 0(i), O(N) 0(1)
remove(i) | O(N) 6O(N) 8(i), O(N) 0(1)

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

N elements

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

‘ %elements ‘ ‘ %elements H %elements ‘ ‘ %elements ‘

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

‘ %elements ‘ ‘ %elements H %elements ‘ ‘ %elements ‘

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

‘ %elements ‘ ‘ %elements H %elements ‘ ‘ %elements ‘

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

‘ %elements ‘ ‘ %elements H %elements ‘ ‘ %elements ‘

‘ 4 elements ‘ ‘ 4 elements ‘ ‘ 4 elements ‘ ‘ 4 elements ‘

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

‘ N elements ‘

‘ %’ elements ‘ ‘ g elements ‘

‘ %elements ‘ ‘ %elements H %elements ‘ ‘ %elements ‘

‘ 4 elements ‘ ‘ 4 elements ‘ ‘ 4 elements ‘ ‘ 4 elements ‘

N elements

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

log(N)—1 log(N)—1
20 |+ D 6w
i=0 i=1

© 2024 Oliver Kennedy, Eric Mikida, The University at Buffalo, SUNY

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

2. 9(1 Z o(N)
i=0 i

(2°5M9(1)) + (1og(N)6(N))

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

log(N)—1 log(N)—1
(d o 26) (Z o(/v))
=0 '

(2°5M9(1)) + (1og(N)6(N))

O(N) + 0(Nlog(N))

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

log(N)—1 log(N)—1
(d o 26) (Z o(/v))
=0 '

(2°5M9(1)) + (1og(N)6(N))

O(N) + 0(Nlog(N))

Merge Sort: 0(Nlog(N))

CSE 250: Midterm Review 1

LMerge Sort, Recursion

Merge Sort

log(N)—1 log(N)—1
(d o 26) (Z o(/v))
=0 '

(2°5M9(1)) + (1og(N)6(N))

O(N) + 0(Nlog(N))

Merge Sort: 0(Nlog(N))
Bubble Sort: 0(N?)

	Class Logistics
	Complexity
	Sequences, Lists
	Amortized Runtime
	Merge Sort, Recursion

