CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Lec 17: Intro to Graphs

mailto:epmikida@buffalo.edu

Announcements

e WAS3 due this Sunday @ 11:59PM
e Midterm grading happen now, hold off on discussion until grading
completes

steps(pos, dest):
if pos == dest then return ©
elif is visited(pos) then return «
elif is filled(pos) then return «
else
Mark pos as visited
min = 1 + min of all 4 steps
Mark pos as unvisited
return min

10

11

12

13

14

15

16

17

18

19

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps from
start to end.

20

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps from
starttoend. v

21

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps from
starttoend. v

What path did we take? 22

Idea: Keep track of the nodes marked visited...that's our path!

23

Mazes: Now with...some data structure?

steps(pos, dest, visited):
if pos == dest then return visited.copy()
elif pos € visited then return no_path
elif is filled(pos) then return no path
else
visited.append(pos)
bestPath = 1 + min of all 4 steps
visited.removelLast()
return bestPath

24

Mazes: Now with...some data structure?

steps(pos, dest, visited):
if pos == dest then return visited.copy()
elif pos € visited then return no_path
elif is filled(pos) then return no path

else What could this data

visited.append(pos) - structure be??
bestPath = 1 + min of all eps

visited.removelLast()
return bestPath

25

Mazes: Now with...Stacks!

steps(pos, dest, visited):

if pos == dest then return visited.copy()

elif pos € visited then return no_path

elif is filled(pos) then return no path

else A stack!
visited.push(pos)
bestPath = 1 + min of all 4 steps
visited.pop()
return bestPath

26

Tracing an Example Search

Tracing an Example Search

Call Stack visited

28

Tracing an Example Search

steps(0,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp, X)
steps(moveDown, X) 0

Call Stack visited

29

Tracing an Example Search

steps(A,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp, X)
steps(moveDown, X)

steps(0,X):
steps{moveRight;X)
steps(moveLeft,X) A
steps(moveUp, X)
steps (moveDown, X) 0

Call Stack visited

30

Tracing an Example Search

steps(A,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp, X)
steps (moveDown, X) A

steps(0,X) 0
Call Stack visited

31

Tracing an Example Search

steps(B,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp, X)
steps(moveDown, X)

steps(A,X):
steps{meveRight; X%}
steps(moveLeft,X) B
steps(moveUp, X)
steps(moveDown,X) A

steps(0,X) 0
Call Stack visited

32

Tracing an Example Search

steps(D,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp,X)
steps(moveDown, X)

steps(C,X)
steps(B,X)
steps(A,X)
steps(0,X) 0

Call Stack visited

> m| O|Oo

33

Tracing an Example Search

steps(D,X):

steps(moveDown, X)
steps(C,X)
steps(B,X)
steps(A,X)
steps(0,X) 0

Call Stack visited

> m| O|Oo

34

Tracing an Example Search

steps(H,X)
steps(G,X)
steps(F,X)
steps(E,X)
steps(D,X)
steps(C,X)
steps(B,X)
steps(A,X)
steps(0,X)

Call Stack visited

> m OO m T|®|XI

@)

35

Tracing an Example Search

steps(J3,X):
steps{moveRight)0
steps(movelLeft, X
steps(moveUp,X)
steps(moveDown, X) J

steps(I,X) |
steps(H,X) H

steps(0,X) 0
Call Stack visited

36

Tracing an Example Search

steps(L,X) L
steps (K, X) K
steps(3,X) J
steps(I,X) |
steps(H,X) H
steps(0,X) 0

Call Stack visited

37

Tracing an Example Search

steps(P,X):
steps(moveRight,X)
steps(moveLeft,X)
steps(moveUp, X)
steps(moveDown, X)

steps(N,X)
steps(M,X)
steps(L,X)

—rI<Z|Z|710

steps(0,X) 0
Call Stack visited

38

Tracing an Example Search

steps(P,X): All 4 return no_path, so min is also
///// no_path

steps(N,X)
steps(M,X)
steps(L,X)

—rI<Z|Z|710

steps(0,X) 0
Call Stack visited

39

Tracing an Example Search

steps(N,X):

steps{tmeveRightsX%)

stepstmeveteftX)

steps{movetp;%)

steps(moveDown, X) N
steps(M,X) M
steps(L,X) L
steps(0,X) 0

Call Stack visited

40

Tracing an Example Search

steps(N,X):

steps{moveRight)0

stepstmeveteftX)

steps{movetp;X%)

steps{mevebown;X) N
steps(M,X) M
steps(L,X) L
steps(0,X) 0

Call Stack visited

41

Tracing an Example Search

steps(L,X) L

steps(0,X) 0
Call Stack visited

42

Tracing an Example Search

steps(J3,X):
steps{moveRight;X)
steps{tmeveteft X))
steps(moveUp,X)
steps(moveDown, X) J

steps(I,X) |
steps(H,X) H

steps(0,X) 0
Call Stack visited

43

Tracing an Example Search

steps(X,X)
return visited.copy!

steps(Q,X)
steps(3,X)
steps(I,X)
steps(H,X)

IT|— | [O|X

steps(0,X) 0
Call Stack visited

44

Tracing an Example Search

steps(Q,X):
returned no_path %ﬂ ée;&%m / returned OABCDEFGHIJQX

steps(3,X)
steps(I,X)
steps(H,X)

I — | |O

r| | 2|0

steps(0,X) 0
Call Stack visited

45

Tracing an Example Search

returned OABCDEFGHIJQX
steps(0,X): ///////
s%epsfmeveRigh%;*}’/
steps(moveLeft,X)
steps(moveUp, X)
steps(moveDown, X) 0

Call Stack visited

46

Tracing an Example Search

returned OABCDEFGHIJQX

steps(0,X): p
stepstmoveRight; Xy returned no_path
steps{moveteft) ‘/%
steps{tmevetp >
steps(moveDown, X) 0

Call Stack visited

47

Tracing an Example Search

steps(X,X)
return visited.copy!

steps(Q,X)
steps(3,X)
steps (K, X)
steps(L,X)

rIxX|«|O | X

steps(0,X) 0
Call Stack visited

48

Tracing an Example Search

steps(0,X):
s—t—epﬁ-emeveR—i-ghtﬁe)‘/

steps{moveleft)
steps{mevedp;X}

A

steps{movebown; %) |

Call Stack

returned OABCDEFGHIJQX

returned no_path
returned OPNMLKJQX

O

visited

49

Tracing an Example Search

steps(0,X):
s—t—epﬁ-emeveR—i-ghtﬁe)‘/

steps{moveleft)
steps{mevedp;X}

AR

steps{movebown; %) |

Call Stack

returned OABCDEFGHIJQX

returned no_path
returned OPNMLKJQX

O

visited

50

Thought Experiment: Can we do something similar with queues?

51

Thought Experiment: Can we do something similar with queues?

Hold that thought!

52

Let's Talk About Graphs

A graph is a pair (V,E) where:

e Vis aset of vertices
e Eis a set of vertex pairs called edges
e Edges and vertices may also store data (labels)

53

Graphs

Example: A social network

(nodes store users, pictures, tweets, etc) =* .

(edges store interactions)

Ref :https://www.pinterest.com/pin/490470215639647556/

Example: A computer network

(edges store ping, nodes store addresses)

110ms
)) 192ms
9 51ms

openclipart.org

55

Example: Moves in a game

X

X X

// //2

— X

\ -

78

Back to Mazes

How could we represent our maze as a graph?

@)

Back to Mazes

How could we represent our maze as a graph?

Edge Types

Directed Edge (asymmetric relationship)

e Ordered pair of vertices (u, v) " transmit bandwidth

e origin (u) —destination (v)
R/ MS 6
=3

round-trip latency

Undirected Edge (symmetric relationship)

e Unordered pair of vertices (u,v)

59

Edge Types

Directed Edge (asymmetric relationship)

e Ordered pair of vertices (u, v)
e origin (u) —destination (v)

Undirected Edge (symmetric relationship)

R 7 ms 6
=3

e Unordered pair of vertices (u,v) |

Directed Graph: All edges are directed round-trip latency

Undirected Graph: All edges are undirected

60

Terminology

Endpoints of an edge
U, V are endpoints of a

Adjacent Vertices
U, V are adjacent

Degree of a vertex
X has degree 5

Terminology

Edges indecent on a vertex
a, b, d are incident on V

Parallel Edges
h, i are parallel

Self-Loop
jis a self-loop

Simple Graph
A graph without parallel edges or
self-loops

Terminology

Path
A sequence of alternating vertices
and edges
e begins with a vertex
e ends with a vertex
e each edge preceded/followed
by its endpoints

Simple Path
A path such that all of its vertices
and edges are distinct

Terminology

Path
A sequence of alternating vertices
and edges
e begins with a vertex
e ends with a vertex
e each edge preceded/followed
by its endpoints

Simple Path
A path such that all of its vertices
and edges are distinct

Uc WeXgY,f,Wd Visnot simple
64

Terminology

Cycle

A path the begins and ends with
the same vertex. Must contain at
least one edge

Simple Cycle
A cycle such that all of its
vertices and edges are distinct

Terminology

V,b,X,g,Y,fW,c Ua,Visa

b simple cycle
h_ j

Cycle

A path the begins and ends with
the same vertex. Must contain at
least one edge

Simple Cycle
A cycle such that all of its
vertices and edges are distinct

Uc WeXgVYfLWdVaUisa

cycle that is not simple 06

Notation

n The number of vertices
m The number of edges

deg(v) The degree of vertex v

67

Graph Properties

Z deg(v) = 2m

Graph Properties

Z deg(v) = 2m

Proof: Each edge is counted twice

69

Graph Properties

In a directed graph with no self-loops and no parallel edges:

msn(n-1)

70

Graph Properties

In a directed graph with no self-loops and no parallel edges:
msn(n-1)
No parallel edges: each pair is connected at most once

No self-loops: pick each vertex only once

71

Graph Properties

In a directed graph with no self-loops and no parallel edges:
msn(n-1)
No parallel edges: each pair is connected at most once
No self-loops: pick each vertex only once

n choices for the first vertex; (n - 1) choices for the second vertex.
Therefore even if there was one edge between every possible pair, we still
have at most n(n - 1) edges

72

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
..are elements (like Linked List Nodes)
..store a value of type v

Edges
..are also elements
...store a value of type E

73

