
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 19: Adjacency Lists and Matrices

mailto:epmikida@buffalo.edu

Announcements

● WA3 due Sunday

2

Edge List Summary

Graph

vertices: LinkedList<Vertex>
edges: LinkedList<Edge>

Vertex

label: T
node: LinkedListNode

Edge

label: T
vertex: origin
vertex: destination
node: LinkedListNode

Storing the list nodes in the
edges/vertices allows us to
remove by reference in 𝚯(1) time

3

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

4

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph

5

How can we improve?

6

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

7

Adjacency List

Each vertex stores a list of inEdges and outEdges, which are maintained
as the graph is modified…

What functions need to change to maintain these lists?

8

1

2

3

4

5

6

public class Vertex<V,E> {

 public Node<Vertex> node;

 public List<Edge> inEdges = new CustomLinkedList<Edge>();

 public List<Edge> outEdges = new CustomLinkedList<Edge>();

 /*...*/

}

Adjacency List

What is the complexity of addEdge now?

9

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 orig.outEdges.add(e);

 dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also add
it to the appropriate adjacency lists

Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)

10

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 orig.outEdges.add(e);

 dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also add
it to the appropriate adjacency lists

Adjacency List

What is the complexity of removeEdge now?

11

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge);

 edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph,
also remove it from the adjacency lists

Adjacency List

What is the complexity of removeEdge now? O(deg(orig) + deg(dest)) :(

But how can we fix this?

12

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge);

 edge.dest.inEdges.remove(edge);

}

← When we remove an edge from the graph,
also remove it from the adjacency lists

Adjacency List

Each Edge now also stores a reference to the nodes in each adjacency list

13

1

2

3

4

5

6

public class Edge<V,E> {

 public Node<Edge> node;

 public Node<Edge> inNode;

 public Node<Edge> outNode;

 /*...*/

}

Adjacency List

What is the complexity of addEdge now? Still 𝚯(1)

14

1

2

3

4

5

6

7

public Edge addEdge(Vertex orig, Vertex dest, E label) {

 Edge e = new Edge(orig, dest, label);

 e.node = edges.add(e);

 e.outNode = orig.outEdges.add(e);

 e.inNode = dest.inEdges.add(e);

 return e;

}

← When we add an edge to the graph, also
add it to the appropriate adjacency lists AND
store the node refs in the Edge object

Adjacency List

What is the complexity of removeEdge now?

15

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge.outNode);

 edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the
graph, also remove it from the
adjacency lists (remove by reference)

Adjacency List

What is the complexity of removeEdge now? 𝚯(1)

16

1

2

3

4

5

public void removeEdge(Edge edge) {

 edges.remove(edge.node);

 edge.orig.outEdges.remove(edge.outNode);

 edge.dest.inEdges.remove(edge.inNode);

}

← When we remove an edge from the
graph, also remove it from the
adjacency lists (remove by reference)

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used?

17

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList

18

Adjacency List

So, we are able to store and maintain adjacency lists in each vertex while
still keeping a 𝚯(1) runtime for addVertex, addEdge, and removeEdge

How much extra space is used? 𝚯(1) per edge

Each edge only appears in 3 lists:
● The edge list
● One vertices inList
● One vertices outList

19

But now what have we gained?

Adjacency List

What is the complexity of removeVertex now?

20

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 removeEdge(edge.node)

 }

 vertices.remove(v.node);

}

Adjacency List

What is the complexity of removeVertex now?

21

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

Adjacency List

What is the complexity of removeVertex now?

22

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1)
time, and there are deg(v) edge in the list

Adjacency List

What is the complexity of removeVertex now? 𝚯(deg(v))

23

1

2

3

4

5

6

public void removeVertex(Vertex v) {

 for(edge : v.getIncidentEdges()) {

 𝚯(1)
 }

 𝚯(1)
}

We now have a reference to the list of edges in 𝚯(1)
time, and there are deg(v) edge in the list

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

24

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

25

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

Now we already know what
edges are incident without
having to check them all

26

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

27

Adjacency Matrix Summary

● addEdge, removeEdge:
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

28

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex:
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Just change a single entry of the matrix

29

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges:
● vertex.edgeTo:
● Space Used:

Resize and copy the
whole matrix

30

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo:
● Space Used:

Check the row and
column for that vertex

31

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used:

Check a single entry of the matrix

32

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of
edge/adjacency lists? 33

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same 34

So…what do we do with our graphs?

35

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

36

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

37

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

38

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

39

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

40

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

41

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

42

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G

43

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G44

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

45

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

46

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

47

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

48

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components 49

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

50

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

51

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

52

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

53

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G

54

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

55

