CSE 250 Recitation

October 7~8: Recursion

Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:

- Be sorted
- Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching **only** the left half or the right half

```
1 int binarySearch(ArrayList<T> list, T target) {
2
    return binarySearch(list, target, 0, list.size() - 1);
3
4
5
  int binarySearch(ArrayList<T> list, T target, int start, int end) {
    if(start == end) { return start; }
6
7
    int mid = (start + end) / 2;
8
    T guess = list.get(mid);
9
    if(guess.equals(target)){ return mid; } // We found our target!
    else if(target.compareTo(guess) < 0) { // Target is in the left half
10
11
       return binarySearch(list, target, start, mid);
                                             // Target is in the right half
12
    } else {
13
       return binarySearch(list, target, mid+1, end);
14
```

Exercise: Determine the growth function for the runtime of binarySearch

Runtime Growth Function

Exercise: Draw the recursion tree for this growth function

Hypothesis

- To form your hypothesis for the runtime of the algorithm, you should ask yourself two questions:
 - How much work are you doing on each level?
 - How many levels are there?

Hypothesis

- We are doing a constant amount of work on each level
- We are guaranteed to have a maximum of log₂(N) levels

Hypothesis Summation

Inductive Hypothesis

$T(N) \in O(\log_2(N))$

Exercise: Write the hypothesis as an inequality Prove a Base Case What is the inductive assumption? Base Case

$T(1) \leq c \cdot \log_2(1)$

Base Case

$\frac{2}{T(1)} \leq c \cdot \log_2(1)$

Inductive Case

Assume: $T\left(\frac{N}{2}\right) \le c \cdot \log_2\left(\frac{N}{2}\right)$

Show: $T(N) \leq c \cdot \log_2(N)$