CSE 250 Recitation

October 7~8: Recursion

Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
e Be sorted

e Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left
half or the right half

Binary Search Code

W 0o NO U1l D W N R

e = O =
A wiNvR OO

int binarySearch(ArraylList<T> list, T target) {
return binarySearch(list, target, 9, list.size() - 1);

}

int binarySearch(ArraylList<T> list, T target, int start, int end) {

if(start == end) { return start; }

int mid = (start + end) / 2;

T guess = list.get(mid);

if(guess.equals(target)){ return mid; } // We found our target!

else if(target.compareTo(guess) < 0) { // Target is in the LlLeft half
return binarySearch(list, target, start, mid);

} else { // Target 1s 1in the right half
return binarySearch(list, target, mid+1l, end);

}

Exercise: Determine the growth function for the runtime of binarySearch

Runtime Growth Function

T(N) = T{I;]] +0(1) if target is not found
0(1) else

Exercise: Draw the recursion tree for this growth function

Hypothesis

To form your hypothesis for the
runtime of the algorithm, you
should ask yourself two
questions:
How much work are you
doing on each level?
How many levels are
there?

Level O

Level 1

Level 2

Level ?

N elements

/

N/2 elements

e

V™

N/2 elements

N/22 elements| IN/22 elements

LN

/

\

1 element

1 element

Hypothesis Level 0 N elements 6(1)

We are doing a constant / \

amount of work on each level Level 1 N/2 elements 0(1) N/2 elements

We are guaranteed to have a

maximum of log,(N) levels / \

Level 2 [N/22 elements| N/22 elements| 0(1)

/N
[\

Level |092(N) 1 element 1 element 0(]_)

Hypothesis
Summation

O(log,(N))

Inductive Hypothesis

I'(N) € O(log,(N))

Exercise: Write the hypothesis as an inequality
Prove a Base Case
What is the inductive assumption?

T(1) < c-log,(1)

Inductive Case N N
Assume: T E < c-log2 E

o T(N) < ¢-log,(N)

