
CSE 250 Recitation
October 7~8: Recursion

Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
● Be sorted
● Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left
half or the right half

Binary Search Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

int binarySearch(ArrayList<T> list, T target) {

 return binarySearch(list, target, 0, list.size() - 1);

}

int binarySearch(ArrayList<T> list, T target, int start, int end) {

 if(start == end) { return start; }

 int mid = (start + end) / 2;

 T guess = list.get(mid);

 if(guess.equals(target)){ return mid; } // We found our target!

 else if(target.compareTo(guess) < 0) { // Target is in the left half

 return binarySearch(list, target, start, mid);

 } else { // Target is in the right half

 return binarySearch(list, target, mid+1, end);

 }

}Exercise: Determine the growth function for the runtime of binarySearch

Runtime Growth Function

Exercise: Draw the recursion tree for this growth function

- To form your hypothesis for the
runtime of the algorithm, you
should ask yourself two
questions:

- How much work are you
doing on each level?

- How many levels are
there?

Hypothesis

- We are doing a constant
amount of work on each level

- We are guaranteed to have a
maximum of log2(N) levels

Hypothesis

Hypothesis
Summation

Inductive Hypothesis

Exercise: Write the hypothesis as an inequality
Prove a Base Case

What is the inductive assumption?

Base Case

Base Case

22

Inductive Case
Assume:

Show:

