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Announcements and Feedback

● Make sure you are on Piazza
● Academic Integrity Quiz due 9/7 @ 11:59PM (MUST GET 100%)
● PA0 due 9/7 @ 11:59PM (MUST GET 100%)
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Why Java?

● Strongly Typed Language: The compiler helps make sure you mean 
what you say

● Compiled Language: Can run it anywhere, see the impacts of your data 
structure choice and data layout

● You know it (hopefully): You learned the basics in 116
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Hello World
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package cse250.examples;

class MainExample {

  /**

   * Main function

   * @param args  The arguments to main

   */

  public static void main(String[] args) {

    System.out.println("Hello World");

  }

}
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Hello World
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package cse250.examples;

class MainExample {

  ...

}

● All code in Java lives in a class
○ In general each class will be in it's own .java file

● Classes are organized into packages
○ Think directories…
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Hello World
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  /**

   * Main function

   * @param args  The arguments to main

   */

● Single line comments in Java start with //
● Multi line comments in Java start with /* and end with */
● Javadoc comments start with /**
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Hello World

1   public static void main(String[] args)

● public - the function can be called by anyone (instead of private)
● static - the function isn't tied to a specific object

○ To call this function we would write MainExample.main(...)
● void - the functions return type (in this case it doesn't return anything)
● main - the function name
● String[] args - the parameter list

○ In this case, a single parameter with the type array of String
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Hello World

1     System.out.println("Hello World");

● System refers to java.lang.System
● System.out is the out field of System
● System.out.println is a function that prints a line of text
● Semicolons (;) are mandatory
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Coding Style is IMPORTANT!!

1

2

3

4

5

6

7

8

9

10

11

12

    class neatClass

{

    public static void

  doSomething(String wowwww)

      {

  String weee = "Yes";

  // this is definitely a for loop

      for (char q : wowwww)

        System.out.println(q);

        System.out.println(wee);

      }

  }

What the heck is going on here!?



Coding Style - Indentation
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    class neatClass

{

    public static void

  doSomething(String wowwww)

      {

  String weee = "Yes";

  // this is definitely a for loop

      for (char q : wowwww)

        System.out.println(q);

        System.out.println(wee);

      }

  }

What the heck is going on here!?

What is in this for loop?

Where does this function end?



Coding Style - Indentation
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class neatClass {

    public static void doSomething(String wowwww) {

        String weee = "Yes";

        // this is definitely a for loop

        for (char q : wowwww)

            System.out.println(q);

        System.out.println(wee);

    }

}

Consistent indentation helps convey code structure at a glance!



Coding Style - Indentation

1

2

3

4

5

6

7

8

9

10

11

12

class neatClass {

    public static void doSomething(String wowwww) {

        String weee = "Yes";

        // this is definitely a for loop

        for (char q : wowwww)

            System.out.println(q);

        System.out.println(wee);

    }

}

Consistent indentation helps convey code structure at a glance!
…but it has no semantic meaning in Java

Java doesn't use indentation 
to determine the body of the 

loop…



Coding Style - Indentation
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class neatClass {

    public static void doSomething(String wowwww) {

        String weee = "Yes";

        // this is definitely a for loop

        for (char q : wowwww) {

            System.out.println(q);

        }

        System.out.println(wee);

    }

}

Always use braces…it saves you from a lot of annoying errors later



Coding Style - Naming

Use variable names that summarize the variable's role or contents, ie:
● username: a string containing a users login name
● nextNode: a pointer to the next node in a linked list
● data: the contents of an ArrayList
● leftChild: a pointer to the left child of a BST

* also make sure the names stay up to date as you change your code…
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Coding Style - Comments

This comment doesn't actually tell us anything useful (we can clearly see 
that what follows is a for loop…)

Comments should provide info that's not already present in the code
● Assumptions you have made when writing the code
● References to documentation/citations
● Clean descriptions of any non-obvious math
● The reasoning behind the chosen solution (especially if it is not the 

"obvious" way)

1 // this is definitely a for loop
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Ways to Succeed when Coding

● NEVER start with code
● What do you have to start with? How is it organized?

○ Draw pictures
○ Try examples on paper

● What do you want the result to be? How should it be organized?
○ DRAW MORE PICTURES/EXAMPLES

● Now figure out how the given input and desired output relate
○ Connect your drawings/diagrams

● Break down bigger problems into smaller ones as needed
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But what if* it doesn't work…?

* no matter how good you are…there will be a time where it doesn't work
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Basic Debugging

Live Demo
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Unit Testing

● When we write code we make a lot of assumptions
○ Often statements of the form [piece of code] should [do a thing]
○ The computer does not know about these assumptions…unless…
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Unit Testing

● Tests allow us to encode our assumptions in a way that the computer 
can understand and automatically check

● Phrases like "[piece of code] should [do a thing]" can become a unit test
● A typical unit test will:

○ Set up a minimal input
○ Invoke the code you want to be tested
○ Test the output/program state to make sure it matches your assumptions
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JUnit

Live Demo
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JUnit Advice (see also Piazza @ 8)

● Keep individual test cases (and their inputs) small
○ Try to focus on tests that just test ONE of your functions
○ Tests that test multiple functions working together are still important, but 

not that useful if you don't have the small ones working first
● If you are stuck, describe your code out loud

○ If you ever find yourself saying: "well this part should…", make sure you 
have a test that confirms that

● At first, try not to think about implementation details
● Write plenty of your own tests, don't just rely on ours
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Combining Unit Testing and Debugging

● Once you have a failing test, if you don't know why…run the debugger!
○ You can step through the code and see what it is ACTUALLY doing

When you lose points on AutoLab your first instinct should be:

"I need to write more tests"
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Ways to Obtain Assistance

● Explain what you've tried
○ Which test cases fail (and if you don't have test cases, make them!)
○ What approaches have you tried and how do they break

● Explain what it is you want to accomplish, and why you want to
○ Make sure we have all the context

● Follow coding style guidelines!
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If you don't feel comfortable with Java…

Remember: Don't start with coding, you should already have plenty of 
pictures/examples/ideas before coding

If you bring us (mostly working) pseudocode, the course staff will happily 
help you translate it to Java
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If you don't feel comfortable with Java…

Typical Questions:
● Syntax Questions (eg: How do I break out of a for loop?)

○ Ask on Piazza, Office hours, etc
○ We can give a very direct answer (ie: you can use the break keyword)

● Semantics Questions (eg: How do I insert an item into a linked list?)
○ Still ask the question!
○ …but the answer will generally not involve code

Many of the "syntax" questions we get are actually about semantics
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Exceptions
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public List<String> loadData(String filename) {

  List<String> ret = new ArrayList<String>();

  BufferedReader input =

      new BufferedReader(new FileReader(filename));

  String line;

  while( (line = input.readLine()) != null ) {

    ret.add(line);

  }

  return ret;

}
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Exceptions
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public List<String> loadData(String filename) {

  List<String> ret = new ArrayList<String>();

  BufferedReader input =

      new BufferedReader(new FileReader(filename));

  String line;

  while( (line = input.readLine()) != null ) {

    ret.add(line);

  }

  return ret;

}

java: unreported exception java.io.IOException; must be caught or declared to be thrown
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What are Exceptions

They are a way to catch an error when something goes horribly wrong!

So what do you do?

29



Catching Exceptions
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public List<String> loadData(String filename) {

  try {

    BufferedReader input =

        new BufferedReader(new FileReader(filename));

    String line;

    while ((line = input.readLine()) != null) {

      ret.add(line);

    }

    return ret;

  } catch(IOException e) {

    // Handle the exception, ie print out what went wrong

    e.printStackTrace();

  }

}



Catching Exceptions
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public List<String> loadData(String filename) {

  try {

    BufferedReader input =

        new BufferedReader(new FileReader(filename));

    String line;

    while ((line = input.readLine()) != null) {

      ret.add(line);

    }

    return ret;

  } catch(IOException e) {

    // Handle the exception, ie print out what went wrong

    e.printStackTrace();

  }

}

Try something that isn't 
guaranteed to work….



Catching Exceptions
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public List<String> loadData(String filename) {

  try {

    BufferedReader input =

        new BufferedReader(new FileReader(filename));

    String line;

    while ((line = input.readLine()) != null) {

      ret.add(line);

    }

    return ret;

  } catch(IOException e) {

    // Handle the exception, ie print out what went wrong

    e.printStackTrace();

  }

}

…and "catch" the exception in 
case something goes wrong



Passing Along Exceptions
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public List<String> loadData(String filename)

  throws IOException // Communicate the explosive potential

{

  BufferedReader input =

      new BufferedReader(new FileReader(filename));

  String line;

  while ((line = input.readLine()) != null) {

    ret.add(line);

  }

  return ret;

}
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Passing Along Exceptions
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public List<String> loadData(String filename)

  throws IOException // Communicate the explosive potential

{

  BufferedReader input =

      new BufferedReader(new FileReader(filename));

  String line;

  while ((line = input.readLine()) != null) {

    ret.add(line);

  }

  return ret;

}

If your function does not 
handle the exception itself, 

then you need to let the outside 
world know something might 

go wrong
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JUnit
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package cse250.examples.debugging;

import org.junit.Test;

import static org.junit.Assert.*;

public class BreakItDownTest {

  ArrayList<FarmersMarket> data = BreakItDown.readMarkets(/*...*/ );

  @Test

  void shouldCount75BakedGoods() throws IOException {

    int count = BreakItDown.countTheBakedGoods(data);

    assertEquals("Incorrect number of baked goods counted", 75, count);

  }

}



JUnit
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package cse250.examples.debugging;

import org.junit.Test;

import static org.junit.Assert.*;

public class BreakItDownTest {

  ArrayList<FarmersMarket> data = BreakItDown.readMarkets(/*...*/ );

  @Test

  void shouldCount75BakedGoods() throws IOException {

    int count = BreakItDown.countTheBakedGoods(data);

    assertEquals("Incorrect number of baked goods counted", 75, count);

  }

}

Import the junit package so you can 
use its functionality



JUnit
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public class BreakItDownTest {

  ...

}

● Test cases go in normal class files
● Usually they will be in a separate directory (test instead of src)
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JUnit
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  @Test

  void shouldCount75BakedGoods() throws IOException {

    int count = BreakItDown.countTheBakedGoods(data);

    assertEquals("Incorrect number of baked goods counted", 75, count);

  }

● Test cases are any normal function, labeled with the @Test annotation
○ Function name does not matter (should still follow good coding style)
○ The return type should be void
○ The function may throw exceptions
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JUnit

1 assertEquals("Incorrect number of baked goods counted", 75, count);

Your tests should include one or more assertions
● This is how you encode your assumptions
● Use them to check:

○ The output of functions you just called
○ The state of data structures after function calls
○ That exceptions are thrown when expected

● The message is optional but highly suggested!
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