
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 02: Java Refresher

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Make sure you are on Piazza
● Academic Integrity Quiz due 9/7 @ 11:59PM (MUST GET 100%)
● PA0 due 9/7 @ 11:59PM (MUST GET 100%)

2

Why Java?

● Strongly Typed Language: The compiler helps make sure you mean
what you say

● Compiled Language: Can run it anywhere, see the impacts of your data
structure choice and data layout

● You know it (hopefully): You learned the basics in 116

3

Hello World

1

2

3

4

5

6

7

8

9

10

11

package cse250.examples;

class MainExample {

 /**

 * Main function

 * @param args The arguments to main

 */

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

4

Hello World

1

2

3

4

5

package cse250.examples;

class MainExample {

 ...

}

● All code in Java lives in a class
○ In general each class will be in it's own .java file

● Classes are organized into packages
○ Think directories…

5

Hello World

1

2

3

4

 /**

 * Main function

 * @param args The arguments to main

 */

● Single line comments in Java start with //
● Multi line comments in Java start with /* and end with */
● Javadoc comments start with /**

6

Hello World

1 public static void main(String[] args)

● public - the function can be called by anyone (instead of private)
● static - the function isn't tied to a specific object

○ To call this function we would write MainExample.main(...)
● void - the functions return type (in this case it doesn't return anything)
● main - the function name
● String[] args - the parameter list

○ In this case, a single parameter with the type array of String

7

Hello World

1 System.out.println("Hello World");

● System refers to java.lang.System
● System.out is the out field of System
● System.out.println is a function that prints a line of text
● Semicolons (;) are mandatory

8

Coding Style is IMPORTANT!!

1

2

3

4

5

6

7

8

9

10

11

12

 class neatClass

{

 public static void

 doSomething(String wowwww)

 {

 String weee = "Yes";

 // this is definitely a for loop

 for (char q : wowwww)

 System.out.println(q);

 System.out.println(wee);

 }

 }

What the heck is going on here!?

Coding Style - Indentation

1

2

3

4

5

6

7

8

9

10

11

12

 class neatClass

{

 public static void

 doSomething(String wowwww)

 {

 String weee = "Yes";

 // this is definitely a for loop

 for (char q : wowwww)

 System.out.println(q);

 System.out.println(wee);

 }

 }

What the heck is going on here!?

What is in this for loop?

Where does this function end?

Coding Style - Indentation

1

2

3

4

5

6

7

8

9

10

11

12

class neatClass {

 public static void doSomething(String wowwww) {

 String weee = "Yes";

 // this is definitely a for loop

 for (char q : wowwww)

 System.out.println(q);

 System.out.println(wee);

 }

}

Consistent indentation helps convey code structure at a glance!

Coding Style - Indentation

1

2

3

4

5

6

7

8

9

10

11

12

class neatClass {

 public static void doSomething(String wowwww) {

 String weee = "Yes";

 // this is definitely a for loop

 for (char q : wowwww)

 System.out.println(q);

 System.out.println(wee);

 }

}

Consistent indentation helps convey code structure at a glance!
…but it has no semantic meaning in Java

Java doesn't use indentation
to determine the body of the

loop…

Coding Style - Indentation

1

2

3

4

5

6

7

8

9

10

11

12

class neatClass {

 public static void doSomething(String wowwww) {

 String weee = "Yes";

 // this is definitely a for loop

 for (char q : wowwww) {

 System.out.println(q);

 }

 System.out.println(wee);

 }

}

Always use braces…it saves you from a lot of annoying errors later

Coding Style - Naming

Use variable names that summarize the variable's role or contents, ie:
● username: a string containing a users login name
● nextNode: a pointer to the next node in a linked list
● data: the contents of an ArrayList
● leftChild: a pointer to the left child of a BST

* also make sure the names stay up to date as you change your code…

14

Coding Style - Comments

This comment doesn't actually tell us anything useful (we can clearly see
that what follows is a for loop…)

Comments should provide info that's not already present in the code
● Assumptions you have made when writing the code
● References to documentation/citations
● Clean descriptions of any non-obvious math
● The reasoning behind the chosen solution (especially if it is not the

"obvious" way)

1 // this is definitely a for loop

15

Ways to Succeed when Coding

● NEVER start with code
● What do you have to start with? How is it organized?

○ Draw pictures
○ Try examples on paper

● What do you want the result to be? How should it be organized?
○ DRAW MORE PICTURES/EXAMPLES

● Now figure out how the given input and desired output relate
○ Connect your drawings/diagrams

● Break down bigger problems into smaller ones as needed
16

But what if* it doesn't work…?

* no matter how good you are…there will be a time where it doesn't work

17

Basic Debugging

Live Demo

18

Unit Testing

● When we write code we make a lot of assumptions
○ Often statements of the form [piece of code] should [do a thing]
○ The computer does not know about these assumptions…unless…

19

Unit Testing

● Tests allow us to encode our assumptions in a way that the computer
can understand and automatically check

● Phrases like "[piece of code] should [do a thing]" can become a unit test
● A typical unit test will:

○ Set up a minimal input
○ Invoke the code you want to be tested
○ Test the output/program state to make sure it matches your assumptions

20

JUnit

Live Demo

21

JUnit Advice (see also Piazza @ 8)

● Keep individual test cases (and their inputs) small
○ Try to focus on tests that just test ONE of your functions
○ Tests that test multiple functions working together are still important, but

not that useful if you don't have the small ones working first
● If you are stuck, describe your code out loud

○ If you ever find yourself saying: "well this part should…", make sure you
have a test that confirms that

● At first, try not to think about implementation details
● Write plenty of your own tests, don't just rely on ours

22

Combining Unit Testing and Debugging

● Once you have a failing test, if you don't know why…run the debugger!
○ You can step through the code and see what it is ACTUALLY doing

When you lose points on AutoLab your first instinct should be:

"I need to write more tests"

23

Ways to Obtain Assistance

● Explain what you've tried
○ Which test cases fail (and if you don't have test cases, make them!)
○ What approaches have you tried and how do they break

● Explain what it is you want to accomplish, and why you want to
○ Make sure we have all the context

● Follow coding style guidelines!

24

If you don't feel comfortable with Java…

Remember: Don't start with coding, you should already have plenty of
pictures/examples/ideas before coding

If you bring us (mostly working) pseudocode, the course staff will happily
help you translate it to Java

25

If you don't feel comfortable with Java…

Typical Questions:
● Syntax Questions (eg: How do I break out of a for loop?)

○ Ask on Piazza, Office hours, etc
○ We can give a very direct answer (ie: you can use the break keyword)

● Semantics Questions (eg: How do I insert an item into a linked list?)
○ Still ask the question!
○ …but the answer will generally not involve code

Many of the "syntax" questions we get are actually about semantics
26

Exceptions

1

2

3

4

5

6

7

8

9

10

public List<String> loadData(String filename) {

 List<String> ret = new ArrayList<String>();

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

}

27

Exceptions

1

2

3

4

5

6

7

8

9

10

public List<String> loadData(String filename) {

 List<String> ret = new ArrayList<String>();

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

}

java: unreported exception java.io.IOException; must be caught or declared to be thrown

28

What are Exceptions

They are a way to catch an error when something goes horribly wrong!

So what do you do?

29

Catching Exceptions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public List<String> loadData(String filename) {

 try {

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while ((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

 } catch(IOException e) {

 // Handle the exception, ie print out what went wrong

 e.printStackTrace();

 }

}

Catching Exceptions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public List<String> loadData(String filename) {

 try {

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while ((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

 } catch(IOException e) {

 // Handle the exception, ie print out what went wrong

 e.printStackTrace();

 }

}

Try something that isn't
guaranteed to work….

Catching Exceptions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public List<String> loadData(String filename) {

 try {

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while ((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

 } catch(IOException e) {

 // Handle the exception, ie print out what went wrong

 e.printStackTrace();

 }

}

…and "catch" the exception in
case something goes wrong

Passing Along Exceptions

1

2

3

4

5

6

7

8

9

10

11

public List<String> loadData(String filename)

 throws IOException // Communicate the explosive potential

{

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while ((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

}

33

Passing Along Exceptions

1

2

3

4

5

6

7

8

9

10

11

public List<String> loadData(String filename)

 throws IOException // Communicate the explosive potential

{

 BufferedReader input =

 new BufferedReader(new FileReader(filename));

 String line;

 while ((line = input.readLine()) != null) {

 ret.add(line);

 }

 return ret;

}

If your function does not
handle the exception itself,

then you need to let the outside
world know something might

go wrong

34

JUnit

1

2

3

4

5

6

7

8

9

10

11

12

13

14

package cse250.examples.debugging;

import org.junit.Test;

import static org.junit.Assert.*;

public class BreakItDownTest {

 ArrayList<FarmersMarket> data = BreakItDown.readMarkets(/*...*/);

 @Test

 void shouldCount75BakedGoods() throws IOException {

 int count = BreakItDown.countTheBakedGoods(data);

 assertEquals("Incorrect number of baked goods counted", 75, count);

 }

}

JUnit

1

2

3

4

5

6

7

8

9

10

11

12

13

14

package cse250.examples.debugging;

import org.junit.Test;

import static org.junit.Assert.*;

public class BreakItDownTest {

 ArrayList<FarmersMarket> data = BreakItDown.readMarkets(/*...*/);

 @Test

 void shouldCount75BakedGoods() throws IOException {

 int count = BreakItDown.countTheBakedGoods(data);

 assertEquals("Incorrect number of baked goods counted", 75, count);

 }

}

Import the junit package so you can
use its functionality

JUnit

1

2

3

public class BreakItDownTest {

 ...

}

● Test cases go in normal class files
● Usually they will be in a separate directory (test instead of src)

37

JUnit

1

2

3

4

5

 @Test

 void shouldCount75BakedGoods() throws IOException {

 int count = BreakItDown.countTheBakedGoods(data);

 assertEquals("Incorrect number of baked goods counted", 75, count);

 }

● Test cases are any normal function, labeled with the @Test annotation
○ Function name does not matter (should still follow good coding style)
○ The return type should be void
○ The function may throw exceptions

38

JUnit

1 assertEquals("Incorrect number of baked goods counted", 75, count);

Your tests should include one or more assertions
● This is how you encode your assumptions
● Use them to check:

○ The output of functions you just called
○ The state of data structures after function calls
○ That exceptions are thrown when expected

● The message is optional but highly suggested!

39

