
CSE 250 ​ Spring 2025

Programming Assignment #1
Tests due: 2/9/25 @ 11:59PM

Implementation due: 2/16/25 @ 11:59PM

Assignment Link: https://classroom.github.com/a/uoOBwdD0

Please read through the entire writeup before beginning the programming assignment

Objectives
1.​ Implement a data structure based on linked lists

a.​ Gain a better understanding of constant vs linear runtime
b.​ See an example of a tactical optimization that improves constant factors
c.​ Be able to compare access-by-reference vs access-by-index

Useful Links
1.​ The Java API

a.​ Comparable
b.​ Optional
c.​ Iterator
d.​ Iterable
e.​ Exceptions

2.​ Testing with JUnit
a.​ Assertions

https://classroom.github.com/a/uoOBwdD0
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/#writing-tests-assertions

CSE 250 ​ Spring 2025

Submission Process, Late Policy and Grading
Testing due date: 2/9/25 @ 11:59PM
Implementation due date: 2/16/25 @ 11:59PM
Total points: 30 (5 for testing + 20 for correctness + 5 for runtime)

The project grade is the grade assigned to the latest (most recent) submission made to Autolab
(or 0 if no submissions are made). Autolab will pull your submission from your GitHub repository,
so you must make sure that any changes you want to be included in your grade have been
committed and pushed.

●​ If your submission is made before the deadline, you will be awarded 100% of the points
your project earns.

●​ If your submission is made up to 24 hours after the deadline, you will be awarded 75% of
the points your project earns.

●​ If your submission is more than 24 hours after the deadline, but within 48 hours of the
deadline, you will be awarded 50% of the points your project earns.

●​ If your submission is made more than 48 hours after the deadline, it will not be accepted.

You will have the ability to use three grace days throughout the semester, and at most two per
assignment (since submissions are not accepted after two days). Using a grace day will negate
the 25% penalty per day, but will not allow you to submit more than two days late. Please plan
accordingly. You will not be able to recover a grace day if you decide to work late and your score
is not sufficiently higher. Grace days are automatically applied to the first instances of late
submissions, and are non-refundable. For example, if an assignment is due on a Sunday and
you make a submission on Monday, you will automatically use a grace day, regardless of
whether you perform better or not. Be sure to test your code before submitting, especially with
late submissions in order to avoid wasting grace days.

Keep track of the time if you are working up until the deadline. Submissions become late after
the set deadline. Keep in mind that submissions will close 48 hours after the original deadline
and you will not be able to submit your code after that time.

Note: No late submissions will be accepted for the testing
portion of the assignment, and no grace days can be used on

the testing portion of the assignment.

CSE 250 ​ Spring 2025

Setup
In order to complete this project, you must have completed PA0. If you are working on a
machine other than the one you used in PA0, you must at least complete steps 2 and 4 in order
to get IntelliJ and GitHub working properly.

Once you have ensured your development environment is setup as in PA0, you can accept the
PA1 assignment in GitHub Classroom (here), and create a new IntelliJ project from VCS with
your newly created repository.

Instructions
In this PA you will be filling in the body of 11 functions to complete the implementation of a
sorted linked list data structure. Additionally, you will be required to write tests which can verify
the correctness of valid implementations, and detect bugs in incorrect implementations.

Hint: Yes…there are 11 functions to write, but if you think carefully, you will realize that only ~4
of them require detailed implementation, and the others can be largely implemented by calling
those 4 functions with only slight modification. Plan out your implementation before coding.

The linked list you will be implementing in this PA differs from the vanilla Linked Lists discussed
in class so far in 3 distinct ways:

-​ Ordering: The data in the linked list must be stored in sorted order. This affects how
items are inserted, as well as how items are searched for.

-​ Hints: Many of the functions have versions which take a node in the list as a hint. This
hint provides those functions with a (hopefully) better location to start their search from.

-​ Duplicates: Rather than having a distinct linked list node for every insertion into the list,
linked list nodes now store a count in addition to the value. If there are multiple insertions
of the same value into the list, the count of the associated linked list node is incremented
instead of creating a new node.

After you complete your tests, make sure to commit and push your work to GitHub, and submit
to the PA1 testing submission in Autolab. After completing your implementation, make sure to
commit and push your work to GitHub, and submit to the PA1 implementation submission in
Autolab. You should only make changes to SortedListTests.java and SortedList.java.

Hint: It is advised that you commit and push frequently rather than waiting until you've
completed everything.

Hint: Although you will get feedback from Autolab about correctness of your solutions, you
should get in the habit of testing locally, and adding test cases as needed. This will be a more
effective/efficient means of development, and will also give you a better understanding of the
content of this programming assignment in the process.

https://classroom.github.com/a/uoOBwdD0

CSE 250 ​ Spring 2025

0. Testing Phase (due 9/15/24)
For this part, modify the file SortedListTests.java to include new test cases.

Your test cases will first be run against a correct implementation of SortedList. If your tests fail
the correct implementation you will receive 0 points for the testing phase.

Your test cases will then be run against several broken implementations of SortedList. You will
get points for each broken implementation that at least one of your tests fail.

1. Define the search functions
Implement the following functions related to searching for a particular value in our linked list:

Optional<LinkedListNode<T>> findRefBefore(T elem)

If the list contains elem, then this function should return a reference to that list node.

If the list does not contain elem, then this function should return a reference to the node that
would immediately come before a node with value elem if it were to be inserted into the list.

If elem is smaller than every element in the list (ie the elem would be inserted at the head of the
list) then this function should return Optional.empty().

For a list of length n, this function should run in O(n).

Optional<LinkedListNode<T>> findRefBefore(T elem, LinkedListNode<T> hint)

The return value of this function should be the same as the return value of
findRefBefore(T elem).

The second argument to this function, hint, is a reference to a node in the list. The search for
the node containing elem should begin at hint rather than the head of the list. The behavior of
this function is undefined if hint is not in the list.

If hint is at position i and the node with value elem is at position j, then this function should run
in O(|i - j|).

Optional<LinkedListNode<T>> findRef(T elem)

CSE 250 ​ Spring 2025

If the list contains elem, then this function should return a reference to that list node.

Otherwise this function should return Optional.empty().

For a list of length n, this function should run in O(n).

Optional<LinkedListNode<T>> findRef(T elem, LinkedListNode<T> hint)

The return value of this function should be the same as the return value of findRef(T elem).

The second argument to this function, hint, is a reference to a node in the list. The search for
the node containing elem should begin at hint rather than the head of the list. The behavior of
this function is undefined if hint is not in the list.

If hint is at position i and the node with value elem is at position j, then this function should run
in O(|i - j|).

Hint: Only one of these functions really needs a detailed implementation if you then use that function as the basis for
defining the other 3.

2. Define the indexing functions
Implement the following functions related to getting an element at a specific position in the list:

LinkedListNode<T> getRef(int idx)

Return a reference to the node containing the element at the provided index. Note that the index
provided is with respect to the elements that have been inserted, not the actual nodes of the list
since there may be fewer nodes than elements.

Throw an IndexOutOfBoundsException if the provided index is invalid (i.e., idx < 0 or
idx >= length).

For a list of length n, this function should run in O(n).

T get(int idx)

CSE 250 ​ Spring 2025

Return the value at the provided index. Note that the index provided is with respect to the
elements that have been inserted, not the actual nodes of the list since there may be fewer
nodes than elements.

Throw an IndexOutOfBoundsException if the provided index is invalid (i.e., idx < 0 or
idx >= length).

For a list of length n, this function should run in O(n).

Hint: Only one of these functions really needs a detailed implementation if you then use that function as the basis for
defining the other one.

3. Define the insertion functions
Implement the following functions related to inserting an element into the list:

LinkedListNode<T> insert(T elem)

Insert elem into the linked list and return the linked list node where it was inserted.

The element should be placed so that the list remains in sorted order. After the insertion, the
returned node's next method should return a reference to the next greatest node, and the prev
method should return a reference to the next least node.

If elem is already in the list, no new node should be created. Instead, increment the count of the
existing node.

For a list of length n, this function should run in O(n).

LinkedListNode<T> insert(T elem, LinkedListNode<T> hint)

Insert elem into the linked list and return the linked list node where it was inserted.

This function should behave exactly like insert(T elem) but with the search for the insertion
point beginning at hint rather than the head of the list. The behavior of this function is
undefined if hint is not in the list.

If hint is at position i and the node with value elem should be at position j, then this function
should run in O(|i - j|).

Hint: Much of the logic for insertion can rely on previously defined functions.

CSE 250 ​ Spring 2025

4. Define the removal functions
Implement the following functions related to removing an element from the list:

T remove(LinkedListNode<T> ref)

Remove a single instance of the element held by the node referenced by ref from the list, and
return its value. The behavior of this function is undefined if ref is not in the list.

If this is the last element of its value, then the node referenced by ref should also be removed
from the linked list.

This function should run in O(1).

T removeN(LinkedListNode<T> ref, int n)

Remove n instances of the element held by the node referenced by ref from the list, and return
its value. The behavior of this function is undefined if ref is not in the list.

If after removing n elements, there are no more elements of the referenced value, then the node
referenced by ref should also be removed from the linked list.

Throw an IllegalArgumentException if n is larger than the number of elements held by ref.

This function should run in O(1).

T removeAll(LinkedListNode<T> ref)

Remove all instances of the element held by the node referenced by ref from the list, return its
value, and remove the node from the linked list. The behavior of this function is undefined if ref
is not in the list.

This function should run in O(1).

Hint: Only one of these functions really needs a detailed implementation if you then use that function as the basis for
defining the other 2.

CSE 250 ​ Spring 2025

Additional Notes

Doubly Linked Lists
A doubly linked list is a collection data structure that stores each of its elements wrapped in a
linked list node (LinkedListNode for this project).

A doubly linked list contains an optional reference to the first node (headNode) in the list and an
optional reference to the last node (lastNode) in the list. Each node contains the value it stores,
and references to the next and previous nodes (if they exist…see the section on Optional
types in Java). In this assignment, each node also contains a count that defines how many
times the associated value has been inserted into the list.

To insert an element into a doubly-linked list, all of the relevant references need to be updated.
Make sure you handle all of the corner cases!

1.​ newNode.next and newNode.prev need to be set appropriately
2.​ newNode.prev.next needs to be updated if it exists
3.​ newNode.next.prev needs to be updated if it exists
4.​ headNode needs to be updated if newNode is inserted at the front
5.​ lastNode needs to be updated if newNode is inserted at the end
6.​ SortedList.length and LinkedListNode.count should be updated

Ordering in Java
Elements stored in SortedList must extend the Comparable interface in Java. This interface
defines a method: int compareTo(T o) that behaves as follows:

●​ a.compareTo(b) < 0​ if a < b
●​ a.compareTo(b) == 0 ​ if a = b
●​ a.compareTo(b) > 0 ​ if a > b

Operations that insert elements into the list should use compareTo to ensure that the new
element is placed at the right location in the list. For example, if you want to check if value1 is
less than value2, check if value1.compareTo(value2) < 0 instead of value1 < value2.

Optional Objects in Java
Because in general there is no guarantee that a LinkedListNode will have a next or previous
node, we cannot store references to LinkedListNodes directly. Similarly, for many of the
SortedList functions, there is no guarantee that a given node will be found, so we cannot
return a reference to a LinkedListNode directly.

CSE 250 ​ Spring 2025

In both cases, we use the Optional class in Java. The Optional<T> class has two static
methods for creating objects, Optional<T> of(T value) and Optional<T> empty().
If for example, we have a function that may or may not return an int, then in Java we would
declare the return type of that function to be Optional<int>. To return an integer, ie 2, our
function would return Optional.of(2). To return nothing our function would return
Optional.empty().

To interact with Optional objects, the Optional<T> class has two useful methods:
isPresent(), and get(). The isPresent() method returns true if the Optional object
actually holds a value, and returns false otherwise. The get() method returns the value held by
the Optional object, and should generally only be called after checking that isPresent()
returns true.

More information on Optional in Java can be found here.

Other Tips
1.​ It is important to understand that the mental model we have of our collection, and its

actual implementation are different. For example, if the linked list in this assignment has
values 1, 1, 1, 2, 3 inserted into it, the sequence it represents is 1, 1, 1, 2, 3. There are 5
elements in that order. The actual implementation of our linked list however would only
have 3 actual linked list nodes.

2.​ The linked list implementation already has the update and iterator methods defined for
you. Feel free to reference them as needed. We also have provided a main function and
some sample tests. Familiarize yourself with these to see examples of how the
SortedList class may be used. Run them!

3.​ When writing tests, it is useful to start with tests that test one function at a time, before
moving on to tests that test the interaction between multiple functions. If you test multiple
functions in the same test without being sure they are individually correct, then if the test
fails it is hard to know where to begin. For example, if you are trying to test the remove
function, but you create the linked list that you will test it on by calling insert, then if the
test fails you don't actually know if the remove call was incorrect, or the insert call was
incorrect. Building your example lists manually (by explicitly creating the nodes and
setting the next/prev refs by hand) you can have more focused testing.

4.​ For testing, try to think about what corner cases or oddities would trip you up when
implementing the list yourself. Think about details which could be easily overlooked.
Then write tests which check for these corner cases and details. In order to do this, you
must have a good understanding of the problem you are trying to solve. Make sure you
understand exactly how the linked list in this assignment is supposed to behave
before writing tests. Draw out examples on paper, and ask clarifying questions as
needed.

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

CSE 250 ​ Spring 2025

Academic Integrity
As a gentle reminder, please re-read the academic integrity policy of the course. I will continue
to remind you throughout the semester and hope to avoid any incidents.

What Constitutes a Violation of Academic Integrity?
These bullets should be obvious things not to do (but commonly occur):

●​ Turning in your friend’s code/write-up (obvious).
●​ Turning in solutions you found on Google with all the variable names changed (should

be obvious). This is a copyright violation, in addition to an AI violation.
●​ Turning in solutions you found on Google with all the variable names changed and 2

lines added (should be obvious). This is also a copyright violation.
●​ Paying someone to do your work. You may as well not submit the work since you will fail

the exams and the course.
●​ Posting to forums asking someone to solve the problem.

Note: Aggregating every [stack overflow answer|result from google|other source] because you
"understand it" will likely result in full credit on assignments (if you aren't caught) and then failure
on every exam. Exams don't test if you know how to use Google, but rather test your
understanding (i.e., can you understand the problems to arrive at a solution on your own). Also,
other students are likely doing the same thing and then you will be wondering why 10 people
that you don’t know have your solution.

Other violations that may not be as obvious:

●​ Working with a tutor who solves the assignment with you. If you have a tutor, please
contact me so that I may discuss with them what help is allowed.

●​ Sending your code to a friend to help them. If another student uses/submits your code,
you are also liable and will be punished.

●​ Joining a chatroom for the course where someone posts their code once they finish, with
the honor code that everyone needs to change it in order to use it.

●​ Reading your friend’s code the night before it is due because you just need one more
line to get everything working. It will most likely influence you directly or subconsciously
to solve the problem identically, and your friend will also end up in trouble.

What Collaboration is Allowed?
Assignments in this course should be solved individually with only assistance from course staff
and allowed resources. You may discuss and help one another with technical issues, such as
how to get your compiler running, etc.

CSE 250 ​ Spring 2025

There is a gray area when it comes to discussing the problems with your peers and I do
encourage you to work with one another to solve problems. That is the best way to learn and
overcome obstacles. At the same time you need to be sure you do not overstep and not
plagiarize. Talking out how you eventually reached the solution from a high level is okay:

"I used a stack to store the data and then looked for the value to return."

but explaining every step in detail/pseudocode is not okay:

"I copied the file tutorial into my code at the start of the function, then created a stack
and pushed all of the data onto the stack, and finished by popping the elements until the
value is found and use a return statement."

The first example is OK but the second is basically a summary of your code and is not
acceptable, and remember that you shouldn’t be showing any code at all for how to do any of it.
Regardless of where you are working, you must always follow this rule: Never come away from
discussions with your peers with any written work, either typed or photographed, and especially
do not share or allow viewing of your written code.

What Resources are Allowed?
With all of this said, please feel free to use any [files|examples|tutorials] that we provide directly
in your code (with proper attribution). Feel free to directly use anything from lectures or
recitations. You will never be penalized for doing so, but should always provide
attribution/citation for where you retrieved code from. Just remember, if you are citing an
algorithm that is not provided by us, then you are probably overstepping.

More explicitly, you may use any of the following resources (with proper citation/attribution):

●​ Any example files posted on the course webpage (from lecture or recitation).
●​ Any code that the instructor provides.
●​ Any code that the TAs provide.
●​ Any code from the Java API (https://docs.oracle.com/javase/8/docs/api/)

Omitting citation/attribution will result in an AI violation (and lawsuits later in life at your

job). This is true even if you are using resources provided.

Amnesty Policy
We understand that students are under a lot of pressure and people make mistakes. If you have
concerns that you may have violated academic integrity on a particular assignment, and would
like to withdraw the assignment, you may do so by sending us an email BEFORE THE
VIOLATION IS DISCOVERED BY US. The email should take the following format:

CSE 250 ​ Spring 2025

Dear Dr. Mikida,

I wish to inform you that on assignment X, the work I submitted was not entirely my own. I would
like to withdraw my submission from consideration to preserve academic integrity.

J.Q. Student
Person #12345678
UBIT: jqstuden

When we receive this email, student J would receive a 0 on assignment X, but would not
receive an F for the course, and would not be reported to the office of academic integrity.

	Programming Assignment #1
	Objectives
	Useful Links
	
	Submission Process, Late Policy and Grading
	
	Setup
	Instructions
	0. Testing Phase (due 9/15/24)
	1. Define the search functions
	2. Define the indexing functions
	3. Define the insertion functions
	4. Define the removal functions

	Additional Notes
	Doubly Linked Lists
	Ordering in Java
	Optional Objects in Java
	Other Tips

	
	Academic Integrity
	What Constitutes a Violation of Academic Integrity?
	What Collaboration is Allowed?
	What Resources are Allowed?
	Amnesty Policy

