
1 Setup

This document will give an inductive proof that the below implementation of factorial

has a runtime in O(n).

Code:

1 public int factorial(int n) {

2 if (n <= 1) {

3 return 1;

4 } else {

5 return n * factorial(n-1);

6 }

7 }

Growth Function:

T (n) =

{
c0 if n ≤ 1

T (n− 1) + c1 otherwise

Where c0 and c1 are constants.

Hypothesis:
T (n) ∈ O(n)

or equivalently, we must show that P (n) is true for all n ≥ n0, where n0 ≥ 0 and P (n) is
defined as:

P (n) : There exists a constant, c > 0, such that T (n) ≤ c · n

2 Base Case Proof

To prove the base case, we need to prove our hypthesis holds for a fixed value of n. Specifi-
cally, we will show that P (1) is true.

T (1)
?

≤ c · 1 (1)

c0
?

≤ c (2)

Therefore, as long as we pick c ≥ c0 then the inequality holds, therefore P(1) is true.

1



3 Inductive Proof

We will now show that P (n− 1) =⇒ P (n).
To do so, we will start by assuming that P (n− 1) is true. More specifically we will assume
that:

There exists a constant, c > 0, such that T (n− 1) ≤ c · (n− 1)

We must now show that under this assumption, P (n) must also be true.

T (n)
?

≤ c · n (3)

T (n− 1) + c1
?

≤ c · n (4)

T (n− 1) + c1 ≤ c · (n− 1) + c1
?

≤ c · n (5)

c · n− c+ c1
?

≤ c · n (6)

c1
?

≤ c (7)

Note: Line (4) was obtained by substituting the definition of T (n)
Note: Line (5) relies on our assumption and the principle of transitivity
Therefore, as long as we pick c ≥ c1, P (n− 1) =⇒ P (n).

4 Conclusion

Our goal was to show that P (n) is true for all values of n greater than some non-negative
constant. In the base case, we got a constraint on c that stated c ≥ c0. In the inductive
step we got an additional constraint that c ≥ c1. We can satify both of these constraints by
picking a value for c that is greater than both c0 and c1, ie: c = c0 + c1.

We then have shown that if c = c0 + c1, P (n) is true when n = 1 (in the Base Case).
Furthermore, the inductive step proves that if c = c0 + c1, then P (n − 1) =⇒ P (n).
Therefore P (n) is true for all n ≥ 1, Therefore T (n) ∈ O(n).

2


