1 Setup

This document will give an inductive proof that the below implementation of factorial
has a runtime in O(n).

Code:

public int factorial(int n) {
if (n <= 1) {
return 1;
} else {
return n * factorial(n-1);

¥

Growth Function:

if n <1
T(n) =1 =
T(n—1)4c¢ otherwise

Where ¢y and ¢; are constants.

Hypothesis:
T(n) € O(n)

or equivalently, we must show that P(n) is true for all n > ng, where no > 0 and P(n) is

defined as:
P(n) : There exists a constant, ¢ > 0, such that T'(n) <c-n

2 Base Case Proof

To prove the base case, we need to prove our hypthesis holds for a fixed value of n. Specifi-
cally, we will show that P(1) is true.

VAN VAR

Therefore, as long as we pick ¢ > ¢q then the inequality holds, therefore P(1) is true.




3 Inductive Proof

We will now show that P(n — 1) = P(n).
To do so, we will start by assuming that P(n — 1) is true. More specifically we will assume
that:

There exists a constant, ¢ > 0, such that T'(n — 1) <c¢-(n—1)

We must now show that under this assumption, P(n) must also be true.

T(n) < c-n (3)

Th—1)+ea < con (4)

Th—1)+e <c-n—1)+a < c-n (5)
cn—cte < con (6)

6 < o (1)

Note: Line (4) was obtained by substituting the definition of T'(n)
Note: Line (5) relies on our assumption and the principle of transitivity
Therefore, as long as we pick ¢ > ¢, P(n — 1) = P(n).

4 Conclusion

Our goal was to show that P(n) is true for all values of n greater than some non-negative
constant. In the base case, we got a constraint on ¢ that stated ¢ > ¢y. In the inductive
step we got an additional constraint that ¢ > ¢;. We can satify both of these constraints by
picking a value for ¢ that is greater than both ¢y and ¢y, ie: ¢ = ¢g + ¢;.

We then have shown that if ¢ = ¢y + ¢;, P(n) is true when n = 1 (in the Base Case).
Furthermore, the inductive step proves that if ¢ = ¢y + ¢1, then P(n — 1) = P(n).
Therefore P(n) is true for all n > 1, Therefore T'(n) € O(n).



