
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 04: ADTs and Data Structures

mailto:epmikida@buffalo.edu

Announcements

● AI Quiz, PA0, WA1 due Sunday @ 11:59PM
● Bring something to write with/on to recitations!

○ You will be turning in work for participation

2

Exercise:
Make a list of your favorite movies…

3

Abstract Data Type

4

The concept of a List is abstract…an ordered collection of things

How we choose to implement it is more concrete:
● Write it down on a piece of paper
● Write it on your computer (in what program?)
● Write it on your phone
● Make it in your head and remember it
● Sculpt it out of spaghetti noodles and glue

Abstract Data Type

Given a List we also have an idea of what we can do with it/ask about it:
● How many items are on the list?
● What are the items on the list?
● What is the first thing on the list? The last? The third?
● Where is "Halloween" on the list? Is it even on the list?
● Add something to the list/remove something from the list

5

Abstract Data Type

Details of our implementation will affect how we perform these tasks:
● Did we number the list? Then it's easier to find what is at a certain

position/how many elements there are
● Did we write in pen, pencil, or digitally? That affects how easily we can

change it
● How much space is on our paper? That affects how many items we

can easily add

6

Abstract Data Type

Knowing what we will use the list for may guide our decisions
● What if I told you to write your top 10 movies? Now we know we only

need space for 10 things
● What if I told you to list everything you ate yesterday? Now we know

the list will never have to change

7

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

8

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

9

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks are
carried out

Different data structures will excel
at different tasks

10

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks are
carried out

Different data structures will excel
at different tasks

The internal structure of our
implementation and the conceptual
model of our ADT do not have to be

identical…more on this later

11

Collections

A Collection (of items) will be our most basic ADT

What can we do with a collection:

1. Get its size (the number of elements in it)
2. Enumerate the elements (iterate over the elements)

We aren't going to deal with collections directly, but instead look at a few
more specific collection ADTs

12

Collection ADTs

Property Sequence List Set Bag

Explicit Order ✓ ✓

Enforced Uniqueness ✓

Fixed Size ✓

Iterable ✓ ✓ ✓ ✓

13

Sequences (what are they?)

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

14

Sequences (what are they?)

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

An "ordered" collection of elements (of fixed size)

15

Sequences (what can you do with them?)

16

Sequences (what can you do with them?)

● Enumerate every element in sequence
○ ie: print out every element, sum every element

● Get the "nth" element
○ ie: what is the first element? what is the 42nd element?

● Modify the "nth" element
○ ie: set the first element to x, set the third element to y

● Count how many elements you have

17

The Sequence ADT

T get(int idx)
Get the element (of type T) at position idx

T set(int idx, T value)
Set the element (of type T) at position idx to a new value

int size()
Get the number of elements in the seq

Iterator<T> iterator()
Get access to view all elements in the sequence, in order, once

18

So…what's in the box?
(how do we implement it)

19

A Brief Aside on RAM (220 crossover)

20

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

21

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

22

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

Array

23

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

fixed element size

fixed number of elements

Array

24

RAM

Allocation with new T:
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

25

RAM

Allocation with new T:
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

The above code allocates 50 * 4 = 200 bytes of memory*
(a single Java int takes of 4 bytes in memory)

* slightly more actually…see next slide

1 int[] arr = new int[50];

26

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

27

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a[0] a[1] a[2] a[3] a[4] …

28

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

T set(int idx, T value)

int size()

29

Arrays in Detail

What does an array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a[0] a[1] a[2] a[3] a[4] …

30The length is stored in the memory allocated for the array…

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

T set(int idx, T value)

int size()

Return the length field

31

Implementing get/set

If arr is at address a, where should you look for arr[19]?

1 int[] arr = new int[50];

32

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4

1 int[] arr = new int[50];

33

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr?)

1 int[] arr = new int[50];

34

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr? No)

1 int[] arr = new int[50];

35

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr? No)

What about a[55]?

1 int[] arr = new int[50];

36

Implementing get/set

If arr is at address a, where should you look for arr[19]?
● a + 19 * 4 (does this computation depend on the size of arr? No)

What about a[55]?
● a + 55 * 4 …but that memory was not reserved for this array.
● Java will prevent you from accessing an out of bounds element

1 int[] arr = new int[50];

37

Arrays in Detail

How would we implement the methods of the Sequence ADT for an Array:

T get(int idx)

Compute the address of the element and return the value there

T set(int idx, T value)

Compute the address of the element and change the value there

int size()

Access the length field

38

Linked Lists

HEAD

None

39

Linked Lists

HEAD

NoneA

40

Linked Lists

HEAD

NoneA B

41

Linked Lists

HEAD

NoneA B C

42

Linked Lists

HEAD

None

A B

CG

I

J

E

K

DH

F

L
43

Linked Lists in Detail

1

2

3

4

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 /* ... */

}

1

2

3

4

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

}

Class for our list, which right now just has a Optional reference to head

Class for a node in the list, which has a value, and an Optional reference to the
next node 44

Linked Lists in Detail

1

2

3

4

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 /* ... */

}

1

2

3

4

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

}

Class for our list, which right now just has a Optional reference to head

Class for a node in the list, which has a value, and an Optional reference to the
next node 45

What is Optional<T>...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

1

2

Integer x = functionThatCanReturnNull();

x.doAThing();

What is Optional<T>...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

java.lang.NullPointerException (runtime error)

1

2

Integer x = functionThatCanReturnNull();

x.doAThing();

What is Optional<T>...a brief digression

We need to add a check for null to avoid this…but this is easy to forget

What if our function returns Optional<Integer> instead?

1

2

3

Integer x = functionThatCanReturnNull();

if (x == null) { /* do something special */ }

else { x.doAThing(); }

What is Optional<T>...a brief digression

● Now our function returns Optional<Integer>
● What can go wrong in the following code snippet?

1

2

Optional<Integer> x = functionThatCanReturnEmpty();

x.doAThing();

What is Optional<T>...a brief digression

● Now our function returns Optional<Integer>
● What can go wrong in the following code snippet?

Cannot resolve method doAThing() in Optional

(compile error)

1

2

Optional<Integer> x = functionThatCanReturnEmpty();

x.doAThing();

What is Optional<T>...a brief digression

Java makes us do something sensible!

1

2

3

Optional<Integer> x = functionThatCanReturnNull();

if (x.isPresent()) { x.get().doAThing(); }

else { /* do something special */ }

What is Option[T]...a brief digression

Creating Optional objects:
Optional.empty() // Like null

Optional.of(x) // Optional object w with value x

Optional.ofNullable(x) // If x is null same as .empty()

Using Optional objects:
.isPresent() // True if there is a value

.get() // gets the value

.orElse(y) // return value if present, y if not

Linked Lists in Detail

How do we implement the methods of the Sequence ADT for a Linked List:

T get(int idx)

T set(int idx, T value)

int length

53

Implementing get/set

get(2)

HEAD

NoneA B C

54

Implementing get/set

get(2)

HEAD

NoneA B C

CURR
i = 0

55

Implementing get/set

get(2)

HEAD

NoneA B C

CURR
i = 1

56

Implementing get/set

get(2)

HEAD

NoneA B C

CURR
i = 2

57

Implementing get/set

58

1

2

3

4

5

6

7

8

9

10

11

public T get(int idx) {

 int i = 0;

 Optional<LinkedListNode<T>> curr = head;

 while(i < idx) {

 if (!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 i++;

 curr = curr.get().next;

 }

 if(!curr.isPresent()) { throw new IndexOutOfBoundsException(); }

 return curr.get().value;

}

Linked Lists in Detail

How do we implement the methods of the Sequence ADT for a Linked List:

T get(int idx)

Go node-by-node until you reach idx and return the value of that node

T set(int idx, T value)

Go node-by-node until you reach idx and set the value of that node

int size()

59

Implementing size

60

1

2

3

4

5

6

public int size() {

 int i = 0;

 Optional<LinkedListNode<T>> curr = head;

 while(curr.isPresent()) { i++; curr = curr.get().next; }

 return i;

}

Alternate Idea: Have the Linked List class store the length

Why might this be a good idea?

Implementing length

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 int length;

 /* ... */

}

61

Alternate Idea: Have the Linked List class store the length

Why might this be a good idea? Faster…?

What do we mean by faster? How much faster? How do we quantify that?

Implementing length

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 int length;

 /* ... */

}

62

● Can also be doubly linked (a next AND a prev pointer per node)
● PA1 will have you implementing a Sorted Doubly Linked List with

some minor twists

Doubly Linked Lists

HEAD

A CB

63

None

TAIL

Doubly Linked Lists

1

2

3

4

5

class LinkedList<T> {

 Optional<LinkedListNode<T>> head = Optional.empty();

 Optional<LinkedListNode<T>> tail = Optional.empty();

 int length;

}

1

2

3

4

6

class LinkedListNode<T> {

 T value;

 Optional<LinkedListNode<T>> next = Optional.empty();

 Optional<LinkedListNode<T>> prev = Optional.empty();

}

64

