
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 05: Intro to Complexity

mailto:epmikida@buffalo.edu

Announcements and Feedback

● AI Quiz, PA0, WA1 due Sunday @ 11:59PM

2

Thought Experiment

Often, many data structures can satisfy a given ADT…how do you choose?

ADT

prepend

get first

get nth

Thought Experiment

Data Structure 1
● Very fast prepend, get first
● Very slow get nth

Data Structure 2
● Very fast get nth, get first
● Very slow prepend

Data Structure 3
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

Thought Experiment

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (Array)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Which is better?

IT DEPENDS!

Thought Experiment

What is "fast"? "slow"?

Data Structure 1 (LinkedList)
● Very fast prepend, get first
● Very slow get nth

Data Structure 2 (ArrayList)
● Very fast get nth, get first
● Very slow prepend

Data Structure 3 (ArrayList…in reverse)
● Very fast get nth, get first
● Occasionally slow prepend

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

7

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor on the market?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 8

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”

9

Let’s do a quick demo…

10

Comparing Random Access for Array vs List

Array List

11

Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…

12

Comparing Random Access for Array vs List

Array List

13

Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they
scale with input size (the shape of the function)

14

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

15

Counting Steps

16

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

Counting Steps

17

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

How many steps does this function take?

Counting Steps

18

1

2

3

4

5

public void userFullName(User[] users, int id) {

 User user = users[id];

 String fullName = user.firstName + user.lastName;

 return fullName;

}

7 steps…ish? Maybe? What the heck is a step?

Counting Steps

19

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

20

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

21

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

22

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Counting Steps

23

1

2

3

4

5

6

7

public void updateUsers(User[] users) {

 x = 1;

 for(User user : users) {

 user.id = x;

 x = x + 1;

 }

}

Steps to "Functions"

Now that we have number of steps* in terms of summations…

…which we can simplify (like in WA1) into mathematical functions…

We can start analyzing runtime as a function

* we'll give a better definition of what a "step" is later

24

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps? 25

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

26

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

NO!

27

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2
28

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?

29

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

30

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over
here

31

Goal: Ignore implementation details

Seasoned Pro Implementation Error 23: Cat on Keyboard

vs

32

Goal: Ignore execution environment

vs

Intel i9
Images from openclipart.org, used with permission

Motorola 68000
33

Goal: Judge the Algorithm Itself

● How fast is a step? Don’t care
○ Only count number of steps

● Can this be done in two steps instead of one?
○ “3 steps per user” vs “some number of steps per user”
○ Sometimes we don’t care…sometimes we do

34

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales

35

Analysis Checklist

1. Don’t think in terms of wall-time, think in terms of “number of steps”
2. To give a useful solution, we should take “scale” into account

○ How does the runtime change as we change the size of the input?
3. Focus on “large” inputs

○ Rank functions based on how they behave at large scales
4. Decouple algorithm from infrastructure/implementation

○ Asymptotic notation…?

36

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implementation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful… 37

Attempt #2: Growth Functions

Not a function in code…but a mathematical function:

T(n)

n: The “size” of the input

ie: number of users,rows, pixels, etc

T(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

38

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

39

Some Basic Assumptions:

Problem sizes are non-negative integers

n ∈ {0, 1, 2, 3, …} = {0} ∪ ℤ+

We can’t reverse time…(obviously)

T(n) > 0

Smaller problems aren’t harder than bigger problems

n1 < n2 ⇒ T(n1) ≤ T(n2)

40

T: {0} ∪ ℤ+ → ℝ+

T is non-decreasing

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

41

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

42

Does 1 extra step per
element really matter…?

Is this just an
implementation detail?

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

43

T1 and T2 are much
more “similar” to
each other than they
are to T3

First Problem…

We are still implementation dependent…

T1(n) = 19n

T2(n) = 20n

T3(n) = 2n2

44

T1 and T2 are much
more “similar” to
each other than they
are to T3 How do we capture

this idea formally?

How Do We Capture Behavior at Scale?

Consider the following two functions:

45

How Do We Capture Behavior at Scale?

46

How Do We Capture Behavior at Scale?

After this point,
these functions
behave the same
(they stay about
100x apart)

47

Attempt #3: Asymptotic Analysis

We want to organize runtimes (growth functions) into
different Complexity Classes

Within the same complexity class, runtimes “behave
the same”/"have the same shape" (at scale)

48

