
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 11: List Review and Sets/Bags

mailto:epmikida@buffalo.edu

Announcements

● PA1 Implementation due Sunday @ 11:59PM
● WA2 will be released after the PA1 deadline, due 2/27 @ 11:59PM

2

Review of Amortized Runtime

With amortized analysis we look at the total cost of a series of operations
and imagine that total cost spread evenly over the operations

Definition: If calling a function, foo, n times takes O(f(n)) steps, the
amortized runtime of foo is O(f(n)/n)

3

Review of Amortized Runtime

With amortized analysis we look at the total cost of a series of operations
and imagine that total cost spread evenly over the operations

Definition: If calling a function, foo, n times takes 𝚯(f(n)) steps, the
amortized runtime of foo is 𝚯(f(n)/n)

4

Review of Amortized Runtime

With amortized analysis we look at the total cost of a series of operations
and imagine that total cost spread evenly over the operations

Definition: If calling a function, foo, n times takes 𝛀(f(n)) steps, the
amortized runtime of foo is 𝛀(f(n)/n)

5

Example

The ArrayList.add(v) function has unqualified runtime O(n)

If we call ArrayList.add(v) n times in a row, it takes 𝚯(n) steps total

Therefore the amortized runtime of ArrayList.add(v) is 𝚯(n/n) = 𝚯(1)

6

Another Example

Imagine a coffee shop that sells coffee for $1

They also sell a reusable cup for $3.50 and refilling it only costs $0.50

How much does it cost to buy coffee for a week w/o the reusable cup?

How much does it cost to buy coffee for a week w/ the reusable cup?

7

Another Example

Imagine a coffee shop that sells coffee for $1

They also sell a reusable cup for $3.50 and refilling it only costs $0.50

How much does it cost to buy coffee for a week w/o the reusable cup? $7

How much does it cost to buy coffee for a week w/ the reusable cup?

8

Another Example

Imagine a coffee shop that sells coffee for $1

They also sell a reusable cup for $3.50 and refilling it only costs $0.50

How much does it cost to buy coffee for a week w/o the reusable cup? $7

How much does it cost to buy coffee for a week w/ the reusable cup? $7

9

Another Example

Imagine a coffee shop that sells coffee for $1

They also sell a reusable cup for $3.50 and refilling it only costs $0.50

How much does it cost to buy coffee for a week w/o the reusable cup? $7

How much does it cost to buy coffee for a week w/ the reusable cup? $7

10

The amortized cost of buying coffee with the reusable cup for
the week ends up being $1 per cup of coffee, even though on the

first day you spend a lot more ($4).

If you know you are going to be buying a lot of coffee, buying the
cup works out in the long run.

If you only end up buying one or two coffees, the reusable cup is
more expensive.

Amortized Example

Imagine the unqualified runtime of foo is O(n3)...what is worst-case
runtime of the above code?

11

1

2

3

for (int i = 0; i < n; i++) {

 foo(i);

}

Amortized Example

Imagine the unqualified runtime of foo is O(n3)...what is worst-case
runtime of the above code? O(n4)

Is that a tight bound? We don't know!

12

1

2

3

for (int i = 0; i < n; i++) {

 foo(i);

}

With an unqualified upper bound,
the shortcut of iter_cost * num_iters
may not give a tight bound!

Amortized Example

Imagine the unqualified runtime of foo is O(n3)...what is worst-case
runtime of the above code? O(n4)

Is that a tight bound? We don't know!

If the amortized runtime of foo is 𝚯(n), what is the runtime?

13

1

2

3

for (int i = 0; i < n; i++) {

 foo(i);

}

With an unqualified upper bound,
the shortcut of iter_cost * num_iters
may not give a tight bound!

Amortized Example

Imagine the unqualified runtime of foo is O(n3)...what is worst-case
runtime of the above code? O(n4)

Is that a tight bound? We don't know!

If the amortized runtime of foo is 𝚯(n), what is the runtime? 𝚯(n2)

14

1

2

3

for (int i = 0; i < n; i++) {

 foo(i);

}

With an unqualified upper bound,
the shortcut of iter_cost * num_iters
may not give a tight bound!

But with amortized the shortcut
always works!

List Summary So Far

15

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(idx) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

set(idx,v) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(v) O(n), Amortized 𝚯(1) 𝚯(1) 𝚯(1)

add(idx,v) ?? 𝚯(idx) ⊂ O(n) 𝚯(1)

remove(idx) O(n) 𝚯(idx) ⊂ O(n) 𝚯(1)

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

What is the runtime of add(int idx, E elem) for an ArrayList?

16

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

Each add is 𝚯(1). Total for n calls is 𝚯(n). Amortized is 𝚯(n/n) = 𝚯(1)

What is the runtime of add(int idx, E elem) for an ArrayList?

17

Note: This is the same as the amortized runtime of ArrayList add!

That means that even though LinkedList and ArrayList add may
perform differently for a single call, they'll perform the same in a loop!

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

Each add is 𝚯(1). Total for n calls is 𝚯(n). Amortized is 𝚯(n/n) = 𝚯(1)

What is the runtime of add(int idx, E elem) for an ArrayList?

18

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

Each add is 𝚯(1). Total for n calls is 𝚯(n). Amortized is 𝚯(n/n) = 𝚯(1)

What is the runtime of add(int idx, E elem) for an ArrayList?

To add between two elements requires the rest of the elements to be
shifted to the right (opposite of remove), so runtime is always O(n).

(Either we are out of space so we copy n, or we have space so we shift n)
19

List Summary So Far

20

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(idx) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

set(idx,v) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(v) O(n), Amortized 𝚯(1) 𝚯(1) 𝚯(1)

add(idx,v) O(n) 𝚯(idx) ⊂ O(n) 𝚯(1)

remove(idx) O(n) 𝚯(idx) ⊂ O(n) 𝚯(1)

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

21

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

ArrayList

Since the amortized runtime of add for ArrayList and LinkedList is 𝚯
(1), adding the n lines of the CSV file will take 𝚯(n) time for both…

But ArrayLists will then have an advantage because looking up records
by index will be O(1) whereas LinkedLists will be O(n)

22

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

23

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

LinkedList

The enumeration will cost a total of 𝚯(n) for both types of List

But some users will experience longer waits being added to the List if
implemented as an ArrayList due to the need for it to occasionally resize

24

Sets and Bags

25

Collection ADTs

Property Sequence List Set Bag

Explicit Order ✓ ✓

Enforced Uniqueness ✓

Fixed Size ✓

Iterable ✓ ✓ ✓ ✓

26

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item)

27

The Set ADT

void add(T element)

Store one copy of element if not already present

boolean contains(T element)

Return true if element is present in the set

boolean remove(T element)

Remove element if present, or return false if not

28

Bags

A Bag is an unordered collection of non-unique elements.

(order doesn't matter, and multiple copies of the same item is OK)

29

The Bag ADT

void add(T element)

Store one copy of element

int contains(T element)

Return the number of copies of element in the bag

boolean remove(T element)

Remove one copy of element if present, or return false if not

Note: Sometimes referred to as multiset. Java does not have a native Bag/Multiset class. 30

Implementation

● LinkedLists and ArrayLists are data structures
● Sequences, Lists, Sets and Bags are ADTs
● We've already seen how we can implement Sequences and Lists with

both LinkedLists and Arrays
● Now let's implement Sets and Bags

This idea of taking a given data structure and implementing a given ADT
will be an important skill in this class!

31

Set Pseudocode
(w/LinkedList)

32

LinkedList<T> data;

add(elem):

Set Pseudocode
(w/LinkedList)

33

LinkedList<T> data;

add(elem):

 data.add(elem)

Is this correct?

Set Pseudocode
(w/LinkedList)

34

LinkedList<T> data;

add(elem):

 data.add(elem)

Is this correct?

void add(T element)

Store one copy of element
if not already present

Set Pseudocode
(w/LinkedList)

35

LinkedList<T> data;

add(elem):

 if(!contains(elem)):

 data.add(elem)

Runtime?

Set Pseudocode
(w/LinkedList)

36

LinkedList<T> data;

add(elem):

 if(!contains(elem)):

 𝚯(1)

Runtime?

Set Pseudocode
(w/LinkedList)

37

LinkedList<T> data;

add(elem):

 if(!contains(elem)):

 𝚯(1)

Runtime? Depends on contains…

Set Pseudocode
(w/LinkedList)

38

LinkedList<T> data;

contains(elem):

Set Pseudocode
(w/LinkedList)

39

LinkedList<T> data;

contains(elem):

 curr ← data.head

 while curr.isPresent():

 if curr.value == elem:

 return true

 curr ← curr.next

 return false

Runtime?

Set Pseudocode
(w/LinkedList)

40

LinkedList<T> data;

contains(elem):

 𝚯(1)

 while curr.isPresent():

 𝚯(1)

 𝚯(1)

Runtime?

Set Pseudocode
(w/LinkedList)

41

LinkedList<T> data;

contains(elem):

 𝚯(1)

 while curr.isPresent():

 𝚯(1)

 𝚯(1)

Runtime? We are not guaranteed to
do all n iterations! So runtime is
O(n) but not 𝚯(n)

Set Pseudocode
(w/LinkedList)

42

LinkedList<T> data;

add(elem):

 if(!contains(elem)):

 𝚯(1)

Runtime? Depends on contains…

Set Pseudocode
(w/LinkedList)

43

LinkedList<T> data;

add(elem):

 if(!contains(elem)):

 𝚯(1)

Runtime? O(n)

Set Pseudocode
(w/LinkedList)

44

LinkedList<T> data;

remove(elem):

Set Pseudocode
(w/LinkedList)

45

LinkedList<T> data;

remove(elem):

 curr ← data.head

 while curr.isPresent():

 if curr.value == elem:

 data.remove(curr)

 return true

 curr ← curr.next

 return false

Set Pseudocode
(w/LinkedList)

46

LinkedList<T> data;

remove(elem):

 curr ← data.head

 while curr.isPresent():

 if curr.value == elem:

 data.remove(curr)

 return true

 curr ← curr.next

 return false

Remove by reference!

Set Pseudocode
(w/LinkedList)

47

LinkedList<T> data;

remove(elem):

 𝚯(1)

 while curr.isPresent():

 𝚯(1)

 𝚯(1)

Runtime? O(n)

Implementing Bag (w/LinkedList)

What changes if we are implementing a Bag instead?

48

Implementing Bag (w/LinkedList)

What changes if we are implementing a Bag instead?
● add doesn't need to check if elem is already in the bag…it's now 𝚯(1)
● contains returns the number of occurrences; 𝚯(n) instead of O(n)
● remove doesn't change

49

Set Pseudocode
(w/ArrayList)

50

ArrayList<T> data;

add(elem):

Set Pseudocode
(w/ArrayList)

51

ArrayList<T> data;

add(elem):

 if(!contains(elem)):

 data.add(elem)

Runtime?

Set Pseudocode
(w/ArrayList)

52

ArrayList<T> data;

add(elem):

 if(!contains(elem)):

 O(n), Amortized 𝚯(1)

Runtime? Still depends on contains

Set Pseudocode
(w/ArrayList)

53

ArrayList<T> data;

contains(elem):

Set Pseudocode
(w/ArrayList)

54

ArrayList<T> data;

contains(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 return true

 idx = idx + 1

 return false

Runtime?

Set Pseudocode
(w/ArrayList)

55

ArrayList<T> data;

contains(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 return true

 idx = idx + 1

 return false

Runtime? O(n)

Set Pseudocode
(w/ArrayList)

56

ArrayList<T> data;

add(elem):

 if(!contains(elem)):

 O(n), Amortized 𝚯(1)

Runtime? Still depends on contains

Set Pseudocode
(w/ArrayList)

57

ArrayList<T> data;

add(elem):

 if(!contains(elem)):

 O(n), Amortized 𝚯(1)

Runtime? O(n)

What about amortized?

Set Pseudocode
(w/ArrayList)

58

ArrayList<T> data;

add(elem):

 if(!contains(elem)):

 O(n), Amortized 𝚯(1)

Runtime? O(n)

What about amortized? O(n)

Set Pseudocode
(w/ArrayList)

59

ArrayList<T> data;

remove(elem):

Set Pseudocode
(w/ArrayList)

60

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data.remove(idx)

 return true

 idx = idx + 1

 return false

Runtime?

Set Pseudocode
(w/ArrayList)

61

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data.remove(idx)

 return true

 idx = idx + 1

 return false

Runtime? O(n)

What about 𝚯?

Set Pseudocode
(w/ArrayList)

62

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data.remove(idx)

 return true

 idx = idx + 1

 return false

Runtime? O(n)

What about 𝚯? For this code…𝚯(i)
steps to find the element at index i,
𝚯(n - i) steps to remove it. 𝚯(i) + 𝚯
(n - i) = 𝚯(n)

Implementing Bag (w/ArrayList)

What changes if we are implementing a Bag instead?

63

Implementing Bag (w/ArrayList)

What changes if we are implementing a Bag instead?
● add doesn't need to check if elem is already in it: amortized 𝚯(1)
● contains returns the number of occurrences; 𝚯(n) instead of O(n)
● remove doesn't change

64

Sets and Bags (...so far)

65

LinkedList ArrayList

Set.add O(n) O(n)

Set.contains O(n) O(n)

Set.remove O(n) 𝚯(n)

Bag.add O(1) O(n), Amortized 𝚯(1)

Bag.contains 𝚯(n) 𝚯(n)

Bag.remove O(n) 𝚯(n)

Potential Improvements

How could we improve these implementations?

Thought…does order matter for sets?

66

Potential Improvements

How could we improve these implementations?

Thought…does order matter for sets? No!

Can we somehow take advantage of that?

67

Small Improvement

Notice how the ArrayList version of remove was 𝚯(n) because we had to
shift over elements to fill the hole after removing the target…

If we don't need to maintain order, we don't need to shift everything to fill
the hole, we can just fill it with the last item!

68

Set Pseudocode
(w/ArrayList)

69

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data[idx] =

 data[data.size()-1]

 data.remove(data.size()-1)

 return true

 idx = idx + 1

 return false

Runtime?

Set Pseudocode
(w/ArrayList)

70

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data[idx] =

 data[data.size()-1]

 data.remove(data.size()-1)

 return true

 idx = idx + 1

 return false

Runtime? Still O(n)...but now 𝛀(1)

Just a tactical optimization, doesn't
change the asymptotic runtime…

Slightly Better Improvement

What if we were to store elements in sorted order instead of the order they
were added…

More on that in a future lecture

71

