
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 15: Binary Search

mailto:epmikida@buffalo.edu

Announcements

● WA2 due yesterday, submissions close tonight!
○ Answer key will be released tomorrow for study purposes

● Midterm Friday – see Piazza @213

2

Recap - Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can do in 𝚯(1))

Conquer: Sort the left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

3

Benefits of a Sorted List

So in O(n log(n)) we can sort a list using the merge sort algorithm…

But how does that benefit us?

4

Binary vs Linear Search

Consider searching for a particular value in an Array (or ArrayList)...

How long does that search take?

5

Binary vs Linear Search

Consider searching for a particular value in an Array (or ArrayList)...

How long does that search take? O(n), we have to check all n elements

This is called a Linear Search (it takes linear time)

6

Binary vs Linear Search

Consider searching for a particular value in an Array (or ArrayList)...

How long does that search take? O(n), we have to check all n elements

This is called a Linear Search (it takes linear time)

What if our list is sorted? Can we do better?

7

Binary vs Linear Search

8

Check the middle element (which we can access in constant time)

Binary vs Linear Search

9

Check the middle element (which we can access in constant time)
If it is smaller than what we are looking for, then our target must be to the right (because our list is sorted)

We can ignore half the list

Binary vs Linear Search

10

Check the middle element (which we can access in constant time)
If it is larger than what we are looking for, then our target must be to the left (because our list is sorted)

We can ignore half the list

Binary vs Linear Search

11

Check the middle element (which we can access in constant time)
If it is larger than what we are looking for, then our target must be to the left (because our list is sorted)

Repeat this process recursively with the remaining elements

We can ignore half the list

Binary vs Linear Search

What is the runtime to search in this fashion?

12

Check the middle element (which we can access in constant time)
If it is larger than what we are looking for, then our target must be to the left (because our list is sorted)

Repeat this process recursively with the remaining elements

We can ignore half the list

Binary vs Linear Search

What is the runtime to search in this fashion? O(log(n))

13

Check the middle element (which we can access in constant time)
If it is larger than what we are looking for, then our target must be to the left (because our list is sorted)

Repeat this process recursively with the remaining elements

We can ignore half the list

Binary vs Linear Search

Linear search:
● Removes one element from consideration each step, O(n)
● Does not require list to be sorted
● Does not require constant time random access

Binary search:
● Removes half of the elements from consideration each step, O(log(n))
● Requires list to be sorted
● Requires constant time random access

○ (binary search on a linked list is still linear time…)
14

Sets and Bags (...so far)

15

LinkedList ArrayList

Set.add O(n) O(n)

Set.contains O(n) O(n)

Set.remove O(n) 𝚯(n)

Bag.add O(1) O(n), Amortized 𝚯(1)

Bag.contains 𝚯(n) 𝚯(n)

Bag.remove O(n) 𝚯(n)

Potential Improvements

How could we improve these implementations?

Thought…does order matter for sets?

16

Potential Improvements

How could we improve these implementations?

Thought…does order matter for sets? No!

Can we somehow take advantage of that?

17

Small Improvement

Notice how the ArrayList version of remove was 𝚯(n) because we had to
shift over elements to fill the hole after removing the target…

If we don't need to maintain order, we don't need to shift everything to fill
the hole, we can just fill it with the last item!

18

Set Pseudocode
(w/ArrayList)

19

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data[idx] =

 data[data.size()-1]

 data.remove(data.size()-1)

 return true

 idx = idx + 1

 return false

Runtime?

Set Pseudocode
(w/ArrayList)

20

ArrayList<T> data;

remove(elem):

 idx ← 0

 while idx < data.size():

 if data[idx] == elem:

 data[idx] =

 data[data.size()-1]

 data.remove(data.size()-1)

 return true

 idx = idx + 1

 return false

Runtime? Still O(n)...but now 𝛀(1)

Just a tactical optimization, doesn't
change the asymptotic runtime…

Slightly Better Improvement

What if we were to store elements in sorted order instead of the order they
were added…

21

Slightly Better Improvement

What if we were to store elements in sorted order instead of the order they
were added…

contains can now use binary search instead of linear search!

contains becomes an O(log(n)) operation

22

Slightly Better Improvement

What if we were to store elements in sorted order instead of the order they
were added…

What about add/remove?

add must insert elements in sorted order, but that still takes O(n)

remove can find the element faster…but will still have to shift elements to
fill the hole, so still takes O(n)

23

Sets and Bags (...so far)

24

LinkedList ArrayList ArrayList (sorted)

Set.add O(n) O(n) O(n)

Set.contains O(n) O(n) O(log(n))

Set.remove O(n) 𝚯(n) O(n)

Bag.add O(1) O(n), Amortized 𝚯(1)

Bag.contains 𝚯(n) 𝚯(n)

Bag.remove O(n) 𝚯(n)

Sets and Bags (...so far)

25

LinkedList ArrayList ArrayList (sorted)

Set.add O(n) O(n) O(n)

Set.contains O(n) O(n) O(log(n))

Set.remove O(n) 𝚯(n) O(n)

Bag.add O(1) O(n), Amortized 𝚯(1)

Bag.contains 𝚯(n) 𝚯(n)

Bag.remove O(n) 𝚯(n)

What about Bag?

Sets and Bags (...so far)

26

LinkedList ArrayList ArrayList (sorted)

Set.add O(n) O(n) O(n)

Set.contains O(n) O(n) O(log(n))

Set.remove O(n) 𝚯(n) O(n)

Bag.add O(1) O(n), Amortized 𝚯(1) O(n)

Bag.contains 𝚯(n) 𝚯(n) O(n)

Bag.remove O(n) 𝚯(n) O(n)

We have to count all
the duplicates and
there could be as

many as n

