
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 16: Midterm #1 Review

mailto:epmikida@buffalo.edu

Midterm Procedure

● Exam is during normal class time. Same time, same place.
● Seating is assigned randomly

○ Wait outside the room until instructed to enter
○ Immediately place all bags/electronics at the front of the room

● At your seat you should have:
○ Writing utensil
○ UB ID card
○ One 8.5x11 cheatsheet (front and back) if desired

■ Summation/Log rules will be provided
○ Water bottle if desired

2

Content Overview

3

Analysis
Tools/Techniques ADTs

Data
Structures

Week 2/3 Summations,
Asymptotic Analysis,
(Unqualified) Runtime Bounds

Week 3 Sequence Array,
LinkedList

Week 4 Amortized Runtime List, Set, Bag ArrayList,
LinkedList

Week 5 Recursion, Induction Set, Bag ArrayList
(sorted),
LinkedList

Analysis Tools and
Techniques

4

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

5

Bounded from
Above: Big O

6

f(n)

c · f(n)

The shaded area represents O(f(n)) –
the set of all functions bounded from
above by something f-shaped

Bounded from
Below: Big 𝛀

7

f(n)

The shaded area represents 𝛀(f(n)) –
the set of all functions bounded from
below by something f-shaped

c · f(n)

Complexity
Class: Big 𝚯

8

f(n)

The overlap (green) is 𝚯(f(n))

clow · f(n)

chigh · f(n)

Complexity
Class: Big 𝚯

9

f(n)

𝚯(f(n)) is the set of functions that will
stay between chigh · f(n) and clow · f(n)
(after some constant n0)

clow · f(n)

chigh · f(n)

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

Complexity
Class Ranking

10

𝚯(n
2)

𝚯(n lo
g(n))

𝚯(n)

𝚯(log(n))

𝚯(1)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

11

Formal Definitions

f(n) ∈ O(g(n)) iff exists some constants c, n0 s.t.

f(n) ≤ c * g(n) for all n > n0

f(n) ∈ 𝛀(g(n)) iff exists some constants c, n0 s.t.

f(n) ≥ c * g(n) for all n > n0

f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

12

Shortcut

What complexity class do each of the following belong to:

f(n) = 4n + n2 ∈ 𝚯(n2)

g(n) = 2n + 4n ∈ 𝚯(2n)

h(n) = 100 n log(n) + 73n ∈ 𝚯(n log(n))

Shortcut: Just consider the complexity of the most dominant term

13

Multi-class Functions

What is the tight upper bound of this function? T(n) ∈ O(n2)

What is the tight lower bound of this function? T(n) ∈ 𝛀(n)

What is the complexity class of this function? It does not have one!

14

It is not bounded from above by n,
therefore it cannot be in 𝚯(n)

It is not bounded from below by n2,
therefore it cannot be in 𝚯(n2)

Amortized Runtime

If n calls to a function take 𝚯(f(n))...

We say the Amortized Runtime is 𝚯(f(n) / n)

The amortized runtime of add on an ArrayList is: 𝚯(n/n) = 𝚯(1)
The unqualified runtime of add on an ArrayList is: O(n)

15

ADTs and Data Structures

16

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

17

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks are
carried out

Different data structures will excel
at different tasks

18

Collection ADTs

Property Sequence List Set Bag

Explicit Order ✓ ✓

Enforced Uniqueness ✓

Fixed Size ✓

Iterable ✓ ✓ ✓ ✓

19

The Sequence ADT

20

1

2

3

4

5

6

public interface Sequence<E> {

 public E get(idx: Int);

 public void set(idx: Int, E value);

 public int size();

 public Iterator<E> iterator();

}

Arrays and Linked Lists in Memory 21

The List ADT

22

1

2

3

4

5

6

7

8

9

10

11

public interface List<E>

 extends Sequence<E> { // Everything a sequence has, and...

 /** Extend the sequence with a new element at the end */

 public void add(E value);

 /** Extend the sequence by inserting a new element */

 public void add(int idx, E value);

 /** Remove the element at a given index */

 public void remove(int idx);

}

List Summary So Far (Lec 9,10,11)

23

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(idx) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

set(idx,v) 𝚯(1) 𝚯(idx) ⊂ O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(v) O(n), Amortized 𝚯(1) 𝚯(1) 𝚯(1)

add(idx,v) O(n) 𝚯(idx) ⊂ O(n) 𝚯(1)

remove(idx) O(n) 𝚯(idx) ⊂ O(n) 𝚯(1)

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item)

24

The Set ADT

void add(T element)

Store one copy of element if not already present

boolean contains(T element)

Return true if element is present in the set

boolean remove(T element)

Remove element if present, or return false if not

25

Bags

A Bag is an unordered collection of non-unique elements.

(order doesn't matter, and multiple copies of the same item is OK)

26

The Bag ADT

void add(T element)

Store one copy of element

int contains(T element)

Return the number of copies of element in the bag

boolean remove(T element)

Remove one copy of element if present, or return false if not

Note: Sometimes referred to as multiset. Java does not have a native Bag/Multiset class. 27

LinkedList ArrayList ArrayList (sorted)

Set.add O(n) O(n) O(n)

Set.contains O(n) O(n) O(log(n))

Set.remove O(n) 𝚯(n) O(n)

Bag.add O(1) O(n), Amortized 𝚯(1) O(n)

Bag.contains 𝚯(n) 𝚯(n) O(n)

Bag.remove O(n) 𝚯(n) O(n)

Sets and Bags (Lec 11,15)

28

Misc

29

Code Analysis

You should be able to derive growth functions for a given piece of code
(recursive and non-recursive!):
● Sequential (statements executed one after another)

○ Add the number of steps together
○ If I do A then B, the total cost is the cost to do A plus the cost to do B

● Selection (conditional execution of statements)
○ Our growth function will be a piecewise function

● Repetition (repeating execution of one or more statements)
○ Add up the total number of steps…with summations

30

Code Analysis (Lec 08)

31

1

2

3

4

5

6

7

8

9

10

11

public void countDuplicates(Data[] data) {

 System.out.println("Counting duplicates");

 int count = 0;

 for (int i = 0; i < data.length; i++) {

 for (int j = i+1; j < data.length; j++) {

 if (data[i] == data[j]) {

 count++;

 }

 }

 }

}

Code Analysis (Lec 12)

32

It's ok to write constants as 𝚯(1) or give them names

1

2

3

4

public int factorial(int n) {

 if(n <= 1) { return 1; } ← Base Case

 else { return n * factorial(n - 1); } ← Recursive Case

}

OR

Accessing Data

We've now seen three different ways to access data:

● By Index/Position: get the value at a certain position
○ ie: give me the first value, last value, tenth value
○ Only applies to Lists/Sequences (Sets and Bags are unordered)

● By Value: find a particular value in a data structure
○ Part of the Set/Bag ADT (but could still be used with Lists/Seqs)

● By Reference: access via direct reference to part of the data structure
○ Can be used when you have a LinkedList data structure
○ It's not magic – you must have a way of getting/storing the reference

33

Sorting / Binary Search

MergeSort: Recursive sorting algorithm that sorts in O(n log(n)) time
(We'll see many other sorting algorithms this semester)

Why is knowing our data is sorted useful?
It can (potentially) make searching for a particular value faster!

34

Binary vs Linear Search (Lec 15)

Linear search:
● Removes one element from consideration each step, O(n)
● Does not require list to be sorted
● Does not require constant time random access

Binary search:
● Removes half of the elements from consideration each step, O(log(n))
● Requires list to be sorted
● Requires constant time random access

○ (binary search on a linked list is still linear time…)
35

