
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 27: Tree Rotations

mailto:epmikida@buffalo.edu


Warm-Up Questions

2

1. What is the maximum depth of a BST?
2. What is the maximum height of a BST?
3. What is the deepest a BST could be?
4. What is the largest number of edges from root to leaf in a BST?
5. Max depth of a BST????
6. What is the worst case runtime of find, insert, remove on a BST?



Warm-Up Questions

3

1. What is the maximum depth of a BST? O(n)
2. What is the maximum height of a BST? O(n)
3. What is the deepest a BST could be? O(n)
4. What is the largest number of edges from root to leaf in a BST? O(n)
5. Max depth of a BST???? O(n)
6. What is the worst case runtime of find, insert, remove on a BST? O(n)



Warm-Up Questions

4

1. What is the maximum depth of a BST? O(n)
2. What is the maximum height of a BST? O(n)
3. What is the deepest a BST could be? O(n)
4. What is the largest number of edges from root to leaf in a BST? O(n)
5. Max depth of a BST???? O(n)
6. What is the worst case runtime of find, insert, remove on a BST? O(n)O(n)

O(n)

O(n)
O(n)

O(n)

O(n)



Announcements

● WA4 due Sunday (very useful for midterm)
● Midterm review session held by SAs this Saturday @ 11AM

5



BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)

6



Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n) 7



Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 8



Short Trees

Short Trees are good: Faster find, insert, remove

9



Short Trees

Short Trees are good: Faster find, insert, remove

How do we make our trees short?

10



Short Trees

Short Trees are good: Faster find, insert, remove

How do we make our trees short? keep them "balanced"

11



Balanced Trees

Short Trees are good: Faster find, insert, remove

How do we make our trees short? keep them "balanced"

What is balanced? How do we keep a tree balanced?

12



Balanced Trees - Two Approaches

Option 1

Keep left/right subtrees within 
+/-1 of each other in height

(add a field to track amount of 
"imbalance")

Option 2

Keep leaves at some minimum 
depth (d/2)

(Add a color to each node marking it 
as "red" or "black")

13



Ok…but how do we enforce 
this…?

14



Rebalancing Trees (rotations)

A

B

X Y Z

15



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 16



Rebalancing Trees (rotations)

A
B

X Y Z

Rotate(A, B) 17



Rebalancing Trees (rotations)

Make A the left child of B

A

B

X Y Z

Rotate(A, B) 18



Rebalancing Trees (rotations)

Make A the left child of B

What about Y?
A

B

X Y Z

Rotate(A, B) 19



Rebalancing Trees (rotations)

Make A the left child of B

What about Y?

Make it the right child

of A

A

B

X Y Z

Rotate(A, B) 20



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 21



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child
A

B

X Y Z

Rotate(A, B) 22



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? A

B

X Y Z

Rotate(A, B) 23



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes! A

B

X Y Z

Rotate(A, B) 24



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

B used to be the right child of A

Therefore B is bigger than A

Therefore A is smaller than B ✓

A

B

X Y Z

Rotate(A, B) 25



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Y used to be in the left subtree of B

Therefore Y is smaller than B

It is still left of B ✓

A

B

X Y Z

Rotate(A, B) 26



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Y used to be in the right subtree of A

It is still in the right subtree of A ✓

A

B

X Y Z

Rotate(A, B) 27



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity?

A

B

X Y Z

Rotate(A, B) 28



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B) 29



Rebalancing Trees (rotations)

A

B

X Y Z

30

A

B

X Y Z

This is called a 
left-rotation around A



Rebalancing Trees (rotations)

A

B

X Y Z

31

A

B

X Y Z

This is called a 
right-rotation around B



Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B)

How does a rotation affect height?

32



Rebalancing Trees (rotations)

Before Rotation (what is the height of A?): A

B

X Y Z

Rotate(A, B) 33



Rebalancing Trees (rotations)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

A

B

X Y Z

Rotate(A, B) 34



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):

35



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1+ max(1 + max(h(X),h(Y)), h(Z))

36



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total 
height increased by 1.

● If Z was the tallest our total height 
decreased by 1.

● If X,Z same height, or Y is the tallest 
then total is unchanged 37



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total 
height increased by 1.

● If Z was the tallest our total height 
decreased by 1.

● If X,Z same height, or Y is the tallest 
then total is unchanged

Therefore, a single left (or right) rotation can 
change the height of the tree by +1/0/-1

38



Rebalancing 
Trees

1

2

3

4

5

6

7
39



Rebalancing 
Trees

1

2

3

4

5
Rotate(1,2)

6

7

40



Rebalancing 
Trees 1

2

3

4

5

Rotate(2,3)
6

7

41



Rebalancing 
Trees

1

2

3

4

5

Rotate(3,4)

6

7

42



Rebalancing 
Trees

31

2

4

5

Rotate(3,2)

6

7

43



Rebalancing 
Trees

31

2

4

6

Rotate(5,6)

75

44


