
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 28: AVL Trees

mailto:epmikida@buffalo.edu

Announcements

● WA4 due Sunday
● Midterm next Friday (See Piazza for details)

○ Extra review session from SAs tomorrow (see Piazza @384)
○ Review lecture on Wednesday
○ Practice exams will be up later today

2

BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)

3

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 4

Keeping Depth Small - Two Approaches

Option 1

Keep tree balanced: subtrees +/-1
of each other in height

(add a field to track amount of
"imbalance")

Option 2

Keep leaves at some minimum
depth (d/2)

(Add a color to each node marking it
as "red" or "black")

5

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 6

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 7

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B) 8

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1+ max(1 + max(h(X),h(Y)), h(Z))

9

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total
height increased by 1.

● If Z was the tallest our total height
decreased by 1.

● If X,Z same height, or Y is the tallest
then total is unchanged 10

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total
height increased by 1.

● If Z was the tallest our total height
decreased by 1.

● If X,Z same height, or Y is the tallest
then total is unchanged

Therefore, a single left (or right) rotation can
change the height of the tree by +1/0/-1

11

AVL Trees

12

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1

13

AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

14

AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

What does enforcing this gain us?

15

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

16

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

17

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

18

AVL Trees - Depth Bounds

Let minNodes(d) be the min number of nodes an in AVL tree of depth d

1 1

2 2

3

4

5

minNodes(0) = 1 minNodes(1) = 2 minNodes(2) = 4

19

AVL Trees - Depth Bounds

Let minNodes(d) be the min number of nodes an in AVL tree of depth d

1 1

2 2

3

4

5

minNodes(0) = 1 minNodes(1) = 2 minNodes(2) = 4

20

Work with you neighbors to come up with an AVL tree
of depth 3 with the fewest nodes possible

AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!

21

6

71

2

3

4

5

AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!

22

6

71

2

3

4

5

This is just the
minimum AVL
tree of depth 2

AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!

23

6

71

2

3

4

5

This is just the
minimum AVL
tree of depth 1

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

24

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

h = d-1
At least one subtree must have depth of d - 1
(because total depth is d) 25

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

d-2 ≤ h ≤ d-1

h = d-1
At least one subtree must have depth of d - 1
(because total depth is d)

The other subtree must have a depth of at
least d - 2 because the AVL constraint does
not allow it to differ by more than 1

26

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

27

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!

28

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!

What is the dth term of the Fibonacci sequence?

Coarse approximation: minNodes(d) = 𝛀(1.5d)

https://en.wikipedia.org/wiki/Fibonacci_sequence 29

https://en.wikipedia.org/wiki/Fibonacci_sequence

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

30

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

31

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

32

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

33

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

34

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

35

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

All constants 36

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

37

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL
constraint, then a tree with n nodes

will have logarithmic depth

38

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL
constraint, then a tree with n nodes

will have logarithmic depth

So how do we enforce the constraint?

39

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

40

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node

41

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node

Better Idea: Just store the balance factor (only needs 2 bits)

42

Enforcing the AVL Constraint

43

Need to add 3 fields to our TreeNode class to make it an AVLTreeNode

1

2

3

4

5

6

7

8

public class AVLTreeNode<T> {

 T value;

 Optional<AVLTreeNode<T>> parent; // We need a ref to parent to rotate

 Optional<AVLTreeNode<T>> leftChild;

 Optional<AVLTreeNode<T>> rightChild;

 Boolean isLeftHeavy; // true if height(right) - height(left) == -1

 Boolean isRightHeavy; // true if height(right) - height(left) == 1

}

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?

44

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert?

45

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1

46

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove?

47

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1

48

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1

Therefore after an operation that modifies an AVL tree, the difference in
heights can be at most 2.

What are the exact ways this broken constraint might show up?

49

Enforcing the AVL Constraint: Case 1

A

B

X Y Z

balance = +2 (too right heavy)

balance = +1 (right heavy)

height = hheight = h - 1height = h - 1

How can we fix this?

Z is the tallest of X, Y, Z

50

Enforcing the AVL Constraint: Case 1

balance = ?

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = ?

51

Enforcing the AVL Constraint: Case 1

balance = 0 ✓

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = 0 ✓

52

Enforcing the AVL Constraint: Case 2

A

B

X Y Z

balance = +2 (too right heavy)

balance = 0 (balanced)

height = hheight = hheight = h - 1

How can we fix this?

Y and Z are taller than X

53

Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = ?

height = hheight = hheight = h - 1

A

B

X Y Z

balance = ?

54

Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = -1 ✓

height = hheight = hheight = h - 1

A

B

X Y Z

balance = 1 ✓

55

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?

56

Y is the tallest of X, Y, Z

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work?

balance = ?

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = ?

57

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

balance = -2 ✘

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = 1 ✓

58

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?
Will just a single left rotation work? No

59

Let's expand Y to figure out what to do

Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hy1height = h - 1

How can we fix this?

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

60

Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = +1 or +2

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

61

Enforcing the AVL Constraint: Case 3

A B

X Y1 Z

balance = 0 ✓

balance = 0 or +1 ✓

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y2
height = hy2

balance = 0 or -1 ✓

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

62

Enforcing the AVL Constraint

● If too right heavy (balance == +2)
○ If right child is right heavy (balance == +1) or balanced (balance == 0)

■ rotate left around the root
○ If right child is left heavy (balance == -1)

■ rotate right around root of right child, then rotate left around root
● If too left heavy (balance == -2)

○ Same as above but flipped

Therefore if we have a balance factor that is off, but all children are
AVL trees, we can fix the balance factor in at most 2 rotations

63

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors

a. If a balance factor becomes +/-2 then rotate to fix

64

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

65

Inserting New Nodes

66

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

Inserting New Nodes

67

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

Find insertion point and create the new
leaf O(d) = O(log n)

Inserting New Nodes

68

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

O(d) = O(log n) iterations

Inserting New Nodes

69

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

What is the cost of each iteration?
How exactly do we fix the issues? (next slide)

Inserting New Nodes

70

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

Inserting New Nodes

71

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a
right heavy subtree, then the

subtree is no longer right heavy
and we can stop here

Inserting New Nodes

72

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a left
heavy subtree, then we just

created imbalance, and need to
rotate. But then we can stop.

Inserting New Nodes

73

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a
balanced subtree, then we mark it

as now being left heavy, and
continue up the tree

Inserting New Nodes

74

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

What is the cost of each iteration? O(1)

Inserting New Nodes

75

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

} Therefore, our total insertion cost is O(d) = O(log(n))

Removing Records

● Removal follows essentially the same process as insertion
○ Do a normal BST removal
○ Go back up the tree adjusting balance factors
○ If you discover a balance factor that goes to +2/-2, rotate to fix

76

Summary

● We want shallow BSTs (it makes find, insert, remove faster)

77

Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

78

Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1

79

Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
● Therefore after insert/remove into an AVL tree, we can reinforce AVL

constraints with one (or two) rotations
○ We only need to make one trip back up the tree to do so
○ Therefore insert/remove is still O(d) = O(log(n)) 80

