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Announcements

● WA4 due Sunday
● Midterm next Friday (See Piazza for details)

○ Extra review session from SAs tomorrow (see Piazza @384)
○ Review lecture on Wednesday
○ Practice exams will be up later today
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BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)
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Tree Depth vs Size
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If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 4



Keeping Depth Small - Two Approaches

Option 1

Keep tree balanced: subtrees +/-1 
of each other in height

(add a field to track amount of 
"imbalance")

Option 2

Keep leaves at some minimum 
depth (d/2)

(Add a color to each node marking it 
as "red" or "black")
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Rebalancing Trees (rotations)
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Rebalancing Trees (rotations)
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Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)
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Rotate(A, B) 8



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1+ max(1 + max(h(X),h(Y)), h(Z))
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Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total 
height increased by 1.

● If Z was the tallest our total height 
decreased by 1.

● If X,Z same height, or Y is the tallest 
then total is unchanged 10



Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation (what is the height of A?):
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation (what is the height of B?):
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total 
height increased by 1.

● If Z was the tallest our total height 
decreased by 1.

● If X,Z same height, or Y is the tallest 
then total is unchanged

Therefore, a single left (or right) rotation can 
change the height of the tree by +1/0/-1

11



AVL Trees
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AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1
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AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"
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AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

What does enforcing this gain us?

15



AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes
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AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes
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AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes
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AVL Trees - Depth Bounds

Let minNodes(d) be the min number of nodes an in AVL tree of depth d
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minNodes(0) = 1 minNodes(1) = 2 minNodes(2) = 4
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AVL Trees - Depth Bounds

Let minNodes(d) be the min number of nodes an in AVL tree of depth d
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minNodes(0) = 1 minNodes(1) = 2 minNodes(2) = 4
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Work with you neighbors to come up with an AVL tree 
of depth 3 with the fewest nodes possible



AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!
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AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!
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AVL Trees - Depth Bounds

The minimum number of nodes for an AVL tree of depth 3…is 7!
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minimum AVL 
tree of depth 1



AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

24



AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

h = d-1
At least one subtree must have depth of d - 1 
(because total depth is d) 25



AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

d-2 ≤ h ≤ d-1

h = d-1
At least one subtree must have depth of d - 1 
(because total depth is d)

The other subtree must have a depth of at 
least d - 2 because the AVL constraint does 
not allow it to differ by more than 1
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AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)
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AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!
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AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!

What is the dth term of the Fibonacci sequence?

Coarse approximation: minNodes(d) = 𝛀(1.5d)

https://en.wikipedia.org/wiki/Fibonacci_sequence 29

https://en.wikipedia.org/wiki/Fibonacci_sequence


AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

All constants 36



AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL 
constraint, then a tree with n nodes 

will have logarithmic depth
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AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL 
constraint, then a tree with n nodes 

will have logarithmic depth

So how do we enforce the constraint?
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Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node
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Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node
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Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node

Better Idea: Just store the balance factor (only needs 2 bits)
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Enforcing the AVL Constraint

43

Need to add 3 fields to our TreeNode class to make it an AVLTreeNode
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public class AVLTreeNode<T> {

  T value;

  Optional<AVLTreeNode<T>> parent; // We need a ref to parent to rotate

  Optional<AVLTreeNode<T>> leftChild;

  Optional<AVLTreeNode<T>> rightChild;

  Boolean isLeftHeavy;   // true if height(right) - height(left) == -1

  Boolean isRightHeavy;  // true if height(right) - height(left) == 1

}



Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
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Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
● What is the effect on the height of insert?
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Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
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Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove?
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Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1
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Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break 
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1

Therefore after an operation that modifies an AVL tree, the difference in 
heights can be at most 2.

What are the exact ways this broken constraint might show up?
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Enforcing the AVL Constraint: Case 1

A

B

X Y Z

balance = +2 (too right heavy)

balance = +1 (right heavy)

height = hheight = h - 1height = h - 1

How can we fix this?

Z is the tallest of X, Y, Z
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Enforcing the AVL Constraint: Case 1

balance = ?

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = ?
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Enforcing the AVL Constraint: Case 1

balance = 0 ✓

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = 0 ✓
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Enforcing the AVL Constraint: Case 2

A

B

X Y Z

balance = +2 (too right heavy)

balance = 0 (balanced)

height = hheight = hheight = h - 1

How can we fix this?

Y and Z are taller than X
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Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = ?

height = hheight = hheight = h - 1

A

B

X Y Z

balance = ?
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Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = -1 ✓

height = hheight = hheight = h - 1

A

B

X Y Z

balance = 1 ✓
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Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?
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Y is the tallest of X, Y, Z



Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? 

balance = ?

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = ?
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Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

balance = -2 ✘

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = 1 ✓
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Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?
Will just a single left rotation work? No

59

Let's expand Y to figure out what to do



Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hy1height = h - 1

How can we fix this?

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1
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Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = +1 or +2

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1
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Enforcing the AVL Constraint: Case 3

A B

X Y1 Z

balance = 0 ✓

balance = 0 or +1 ✓

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y2
height = hy2

balance = 0 or -1 ✓

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1
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Enforcing the AVL Constraint

● If too right heavy (balance == +2)
○ If right child is right heavy (balance == +1) or balanced (balance == 0)

■ rotate left around the root
○ If right child is left heavy (balance == -1)

■ rotate right around root of right child, then rotate left around root
● If too left heavy (balance == -2)

○ Same as above but flipped

Therefore if we have a balance factor that is off, but all children are 
AVL trees, we can fix the balance factor in at most 2 rotations
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Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors

a. If a balance factor becomes +/-2 then rotate to fix

64



Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)
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Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

}



Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

}

Find insertion point and create the new 
leaf O(d) = O(log n)



Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

}

O(d) = O(log n) iterations



Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

}

What is the cost of each iteration?
How exactly do we fix the issues? (next slide)



Inserting New Nodes
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if (newNode.parent.get().leftChild.orElse(null) == newNode) {

  // Fix issues that occur from inserting into parents left subtree

  if (newNode.parent.get().isRightHeavy) {

    newNode.parent.get().isRightHeavy = false;

    return

  } else if (newNode.parent.get().isLeftHeavy) {

    if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

    else newNode.parent.get().rotateLeftRight();

    return

  } else {

    newNode.parent.get().isLeftHeavy = true;

  }

}



Inserting New Nodes
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if (newNode.parent.get().leftChild.orElse(null) == newNode) {

  // Fix issues that occur from inserting into parents left subtree

  if (newNode.parent.get().isRightHeavy) {

    newNode.parent.get().isRightHeavy = false;

    return

  } else if (newNode.parent.get().isLeftHeavy) {

    if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

    else newNode.parent.get().rotateLeftRight();

    return

  } else {

    newNode.parent.get().isLeftHeavy = true;

  }

}

If we inserted into the left of a 
right heavy subtree, then the 

subtree is no longer right heavy 
and we can stop here



Inserting New Nodes
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if (newNode.parent.get().leftChild.orElse(null) == newNode) {

  // Fix issues that occur from inserting into parents left subtree

  if (newNode.parent.get().isRightHeavy) {

    newNode.parent.get().isRightHeavy = false;

    return

  } else if (newNode.parent.get().isLeftHeavy) {

    if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

    else newNode.parent.get().rotateLeftRight();

    return

  } else {

    newNode.parent.get().isLeftHeavy = true;

  }

}

If we inserted into the left of a left 
heavy subtree, then we just 

created imbalance, and need to 
rotate. But then we can stop.



Inserting New Nodes
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if (newNode.parent.get().leftChild.orElse(null) == newNode) {

  // Fix issues that occur from inserting into parents left subtree

  if (newNode.parent.get().isRightHeavy) {

    newNode.parent.get().isRightHeavy = false;

    return

  } else if (newNode.parent.get().isLeftHeavy) {

    if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

    else newNode.parent.get().rotateLeftRight();

    return

  } else {

    newNode.parent.get().isLeftHeavy = true;

  }

}

If we inserted into the left of a 
balanced subtree, then we mark it 

as now being left heavy, and 
continue up the tree



Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

}

What is the cost of each iteration? O(1)



Inserting New Nodes
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public void insert(T value, AVLTreeNode<T> root) {

  // Use normal logic for inserting into a BST, then set heavy flags

  AVLTreeNode<T> newNode = insertIntoBST(value, root);

  newNode.isLeftHeavy = newNode.isRightHeavy = false;

  while (newNode.parent.isPresent()) {

    if (newNode.parent.get().leftChild.orElse(null) == newNode) {

      // Fix issues that occur from inserting into parents left subtree

    } else {

      // Fix issues that occur from inserting into parents right subtree

    }

    newNode = newNode.parent.get();

  }

} Therefore, our total insertion cost is O(d) = O(log(n))



Removing Records

● Removal follows essentially the same process as insertion
○ Do a normal BST removal
○ Go back up the tree adjusting balance factors
○ If you discover a balance factor that goes to +2/-2, rotate to fix
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Summary

● We want shallow BSTs (it makes find, insert, remove faster)
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Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))
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Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
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Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
● Therefore after insert/remove into an AVL tree, we can reinforce AVL 

constraints with one (or two) rotations
○ We only need to make one trip back up the tree to do so
○ Therefore insert/remove is still O(d) = O(log(n)) 80


