
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 30: Midterm #2 Review

mailto:epmikida@buffalo.edu

Announcements

● Midterm Friday! (see Piazza post)
● WA4 answer key posted
● No recitations this week

2

Course
Roadmap

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Sequence Array,
LinkedList

Amortized Runtime List, Set, Bag ArrayList,
LinkedList

Recursive analysis, divide
and conquer

Midterm #1

3

Analysis
Tools/Techniques

ADTs Data
Structures

Stack, Queue ArrayList,
LinkedList

Review recursive analysis Graphs,
PriorityQueue

EdgeList,
AdjacencyList,
AdjacencyMatrix

Sets, Bags BST, AVL Tree,
Red-Black Tree,
Heaps

Midterm #2

Expected runtime HashTables

Miscellaneous

Course
Roadmap

4

Major Topics

● Stacks/Queues
○ What ordering do they enforce? How do we implement? What are they

used for?
● Graphs

○ What can they represent? How can we implement them? Runtimes?
○ What can we use them for? How do we search them?

● PriorityQueues
○ What can they do? How do we implement? What are the runtimes?
○ What can we use them for and how?

● Trees
○ Heaps, BSTs (General BSTs, Balanced BSTs – AVL and Red-Black)

5

Stacks and Queues

6

Stacks

Represents a stack of objects on top of one another

7

1

2

3

4

5

6

7

8

9

public class Stack<E> {

 public void push(E value); // Add value to the "top" of the stack

 public E pop(); // Remove and return the top of the stack

 public E peek(); // Return the top of the stack

}

Queues

Outside of the US, "queueing" is lining up, ie at Starbucks

8

1

2

3

4

5

6

7

8

9

public class Queue<E> {

 public void add(E value); // Add value to the "back" of the queue

 public E remove(); // Remove and return the front of the queue

 public E peek(); // Return the front of the queue

}

Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1))
● Pop (take item off top of stack) 𝚯(1)
● Peek (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Peek (peek at the item in the front of the queue) 𝚯(1)

9

Graphs

10

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
…are elements
…store a value of type V

Edges
…are also elements
…store a value of type E

11

A (Directed) Graph ADT

What can we do with a Graph?

● Iterate through the vertices
● Iterate through the edges
● Add a vertex
● Add an edge
● Remove a vertex
● Remove an edge

12

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

public interface Graph<V, E> {

 public Iterator<Vertex> vertices();

 public Iterator<Edge> edges();

 public Vertex addVertex(V label);

 public Edge addEdge(Vertex orig, Vertex dest, E label);

 public void removeVertex(Vertex vertex);

 public void removeEdge(Edge edge);

}

13

A (Directed) Graph ADT

What can we do with a Vertex?
● Get it's label
● Get the outgoing edges
● Get the incoming edges
● Get all incident edges
● Check if it's adjacent to another Vertex

14

A (Directed) Graph ADT

What can we do with an Edge?
● Get it's label
● Get the incident vertices

15

A (Directed) Graph ADT

1

2

3

4

5

6

7

8

9

10

11

12

13

public interface Vertex<V,E> {

 public V getLabel();

 public Iterator<Edge> getOutEdges();

 public Iterator<Edge> getInEdges();

 public Iterator<Edge> getIncidentEdges();

 public boolean hasEdgeTo(Vertex v);

}

public interface Edge<V,E> {

 public Vertex getOrigin();

 public Vertex getDestination();

 public E getLabel();

} 16

Implementation Attempt 1: Edge List

Data Model:

A List of Edges
(LinkedList)

A List of Vertices
(LinkedList)

An EdgeList is exactly what it sounds like, a single big list of edges (with
a list of vertices as well)

17

Edge List Summary

18

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph

19

How can we improve?

Idea: Store the in/out edges for each vertex!

(Called an adjacency list)

20

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

21

Adjacency List Summary

● addEdge, addVertex: 𝚯(1)
● removeEdge: 𝚯(1)
● removeVertex: 𝚯(deg(vertex))
● vertex.incidentEdges: 𝚯(deg(vertex))
● vertex.edgeTo: 𝚯(deg(vertex))
● Space Used: 𝚯(n) + 𝚯(m)

Now we already know what
edges are incident without
having to check them all

22

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

23

Adjacency Matrix Summary

● addEdge, removeEdge: 𝚯(1)
● addVertex, removeVertex: 𝚯(n2)
● vertex.incidentEdges: 𝚯(n)
● vertex.edgeTo: 𝚯(1)
● Space Used: 𝚯(n2)

24

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

25

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 26

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 27

← Mark the vertex as VISITED (so we'll never try to visit it again)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 28

Check every outgoing edge (every possible
way we could leave the current vertex)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 29

Follow the unexplored edges

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 30

If it leads to an unexplored vertex, then it is a
spanning edge. Recursively explore that vertex.

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 31

Otherwise, we just found a cycle

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne O(|E|) total

 O(|V| + |E|)

We can also implement DFS without recursion by using a Stack!

32

Breadth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E) in increasing order of distance from the start

● Construct a spanning tree for every connected component
○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles
○ Side Effect: Identify shortest paths to the starting vertex

● Complete in time O(|V| + |E|), with memory overhead O(|V|)

33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 34

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 35

Use a queue to keep track of what vertices we
want to visit (basically a running TODO list)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 36

Dequeue a vertex from the
Queue and check all of it's
outgoing edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 37

When we find a new vertex, mark
it as VISITED, and add it to our
TODO list.

Remember, our TODO list is a
Queue (FIFO) so whatever we
enqueud first will be the next
thing we dequeue (and explore)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 38

When doing BFS we label edges
that return to visited vertices as
CROSS edges

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex O(|E|) total

 O(|V| + |E|)

39

Djikstra's Algorithm

● Both BFS and DFS search the whole graph
○ DFS – Exploration order based on a Stack (LIFO)
○ BDS – Exploration order based on a Queue (FIFO)
○ The paths BFS finds are the shortest paths in terms of # of edges

● Djikstra's Algorithm finds the shortest path in terms of total distance
○ Can't rely on Stack or Queue – need an ADT that orders the vertices

40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

41

Create a new PriorityQueue and
insert the starting point with a
distance of 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

42

When we pull something out of the
PriorityQueue, if it is still
UNEXPLORED then we just found
the shortest path to that vertex, and
we can mark it as VISITED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

43

Add each unexplored neighbor to the PriorityQueue.
Set it's distance equal to our current distance plus the weight of the
edge to get to the neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

44

What is the complexity?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

45

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

46

What is the complexity?

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Each vertex may be added once per incoming edge. So
the size of the PriorityQueue can get as large as |E|

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public void Djikstras(Graph graph, Vertex v) {

 PriorityQueue<TodoEntry> todo = new PriorityQueue<>();

 todo.add(new TodoEntry(v,0));

 while (!todo.isEmpty()) {

 TodoEntry curr = todo.poll();

 if (curr.vertex.label == UNEXPLORED) {

 curr.vertex.setLabel(VISITED);

 for (Edge e : curr.vertex.outEdges) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 todo.add(new TodoEntry(w, curr.weight + e.weight));

 }

 }

 }

 }

}

47

What is the complexity? O(|V| + |E| log(|E|))

We know removal from a
PriorityQueue is

O(log(todo.size())

How big can todo get? |E|

Label the |V| vertices |E| adds/removes to the PriorityQueue

Trees

48

Types of Trees
Covered

49

Trees

Binary Trees

Heaps BSTs

AVL Red-Black

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

50

A max heap would
reverse this ordering

Binary Min Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≤ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

51

A max heap would
reverse this orderingIf what we are storing in the

Heap does not have a default
ordering, we must tell Java how

to order the items!!

The MinHeap ADT

void pushHeap(T value)
Place an item into the heap

T popHeap()
Remove and return the minimal element from the heap

T peek()
Peek at the minimal element in the heap

int size()
The number of elements in the heap

52

pushHeap

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current < parent

a. Swap current with parent
b. Set current = parent

What is the complexity (or how many swaps occur)? O(log(n))

53

popHeap

Idea: Replace root with the last element then fix the heap

1. Start with current = root
2. While current has a child < current

a. Swap current with its smallest child
b. Set current = child

What is the complexity (or how many swaps occur)? O(log(n))

54

Priority Queues

Operation Lazy Proactive Heap

add O(1) O(n) O(log(n))

poll O(n) O(1) O(log(n))

peek O(n) O(1) O(1)

55

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Idea: Use an ArrayList

56

Storing Heaps
How can we store this
heap in an array buffer?

1 3 1 4 5 2 4 10 4 57

4

1

3 1

54 2 4

10

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Given the cost of fixUp and fixDown what do we expect the complexity
Heapify will be?

58

Heapify

6

4 7

108 2 1

Given an arbitrary array
(shown as a tree here)
turn it into a heap

59

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on each
node (0 swaps per node)

60

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

61

Heapify

6

4 1

108 2 7

Do the same at the next
lowest level (at most one
swap per node)

✓

62

Heapify

6

4 1

108 2 7

Continue upwards (now at
most 2 swaps per node)

63

Heapify

1

4 6

108 2 7

Continue upwards (now at
most 2 swaps per node)

64

Heapify

1

4 2

108 6 7

Continue upwards (now at
most 2 swaps per node)

65

Heapify

1

4 2

108 6 7

Continue upwards (now at
most 2 swaps per node)

66

✓

Heapify
Therefore we can heapify
an array of size n in O(n)

(but heap sort still
requires n log(n) due to
dequeue costs)

67

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key
● For every node XR in the right subtree of node X: XR.key > X.key

X partitions its children

68

If what we are storing in the
BST does not have a default

ordering, we must tell Java how
to order the items!!

Is this a valid
BST?
Yes!

69

6

4 10

51 7 11

3

2

8

9

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)
3. Is k less than root.value's key? (if yes, search left subtree)
4. Is k greater than root.value's key? (If yes, search the right subtree)

70

Inserting an Item

Goal: Insert a new item with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)
3. Is k less than root.value's key? (call insert on left subtree)
4. Is k greater than root.value's key? (call insert on right subtree)

71

Removing an Item

Goal: Remove the item with key k from a BST rooted at root

1. find the item
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

72

BST Operations

What is the d in terms of n? O(n)

What about the lower bound? 𝛀(log(n))

Can we do better? YES!

Operation Runtime

find O(d)

insert O(d)

remove O(d)

73

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 74

Rebalancing Trees (rotations)

Make A the left child of B

What about Y?

Make it the right child

of A

A

B

X Y Z

Rotate(A, B) 75

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B) 76

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 77

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1

78

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

79

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

80

Removing Records

● Removal follows essentially the same process as insertion
○ Do a normal BST removal
○ Go back up the tree adjusting balance factors
○ If you discover a balance factor that goes to +2/-2, rotate to fix

81

Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
● Therefore after insert/remove into an AVL tree, we can reinforce AVL

constraints with one (or two) rotations
○ We only need to make one trip back up the tree to do so
○ Therefore insert/remove is still O(d) = O(log(n)) 82

Maintaining Balance - Another Approach

Enforcing height-balance is too strict (May do “unnecessary” rotations)

Weaker (and more direct) restriction:
● Balance the depth of empty tree nodes
● If a, b are EmptyTree nodes, then enforce that for all a, b:

○ depth(a) ≥ (depth(b) ÷ 2)

or

○ depth(b) ≥ (depth(a) ÷ 2)

83

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

Therefore enforcing these constraints means that
tree depths is O(log(n))...

So how do we enforce them (efficiently)?

If no empty node has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

84

Red-Black Trees

To Enforce the Depth Constraint on empty nodes:

1. Color each node red or black
a. The # of black nodes from each empty node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a

85

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes
along the path back to the root. All 3 in this case ✓

Confirm no red nodes have red parents ✓ 86

Red-Black Tree

Note: Each insertion creates at most one red-red parent-child conflict
● O(1) time to recolor/rotate to repair the parent-child conflict
● May create a red-red conflict in grandparent

○ Up to d/2 = O(log(n)) repairs required, but each repair is O(1)
● Insertion therefore remains O(log(n))

Note: Each deletion removes at most one black node (red doesn't matter)
● O(1) time to recolor/rotate to preserve black-depth
● May require recoloring (grand-)parent from black to red

○ Up to d = O(log(n)) repairs required
● Deletion therefore remains O(log(n))

87

BST Operations

The tree operations on a BST are always O(d) (they involve a constant
number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth

Operation BST AVL Red-Black

find O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

insert O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

remove O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

88

Misc

89

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item key)

90

The Set ADT

void add(T element)

Store one copy of element if not already present

boolean contains(T element)

Return true if element is present in the set

boolean remove(T element)

Remove element if present, or return false if not

91

Bags

A Bag is an unordered collection of non-unique elements.

(order doesn't matter, and multiple copies with the same key is OK)

92

The Bag ADT

void add(T element)

Store one copy of element

int contains(T element)

Return the number of copies of element in the bag

boolean remove(T element)

Remove one copy of element if present, or return false if not

Note: Sometimes referred to as multiset. Java does not have a native Bag/Multiset class. 93

Implementing Sets/Bags

94

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

Implementing Sets/Bags

95

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

How would our implementations and
runtimes look if we implemented Sets and

Bags with Trees?

Implementing Sets/Bags

96

add contains remove

BST O(n) O(n) O(n)

AVL Tree O(log n) O(log n) O(log n)

Red-Black Tree O(log n) O(log n) O(log n)

Implementing Sets/Bags

97

add contains remove

BST O(n) O(n) O(n)

AVL Tree O(log n) O(log n) O(log n)

Red-Black Tree O(log n) O(log n) O(log n)

What about Bags? How can we allow
duplicates in our BSTs?

Implementing Sets/Bags

98

add contains remove

BST O(n) O(n) O(n)

AVL Tree O(log n) O(log n) O(log n)

Red-Black Tree O(log n) O(log n) O(log n)

What about Bags? How can we allow
duplicates in our BSTs?

Option 1: Put ≤ to the left instead of just <
Option 2: Store duplicates in the same node
(like in PA1)

