
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 31: Expected Runtime

mailto:epmikida@buffalo.edu

Warm-Up Question

2

What sorting algorithms have we seen, what are their complexities, and
what benefits can we get from data that is sorted?

Warm-Up Question

3

What sorting algorithms have we seen, what are their complexities, and
what benefits can we get from data that is sorted?

BubbleSort, SelectionSort, InsertionSort - O(n2)

MergeSort, HeapSort - O(n log n)

Why Sort? Searching sorted data can be faster (binary vs linear search)

Announcements

● Midterm 2 Grading in Progress
● PA3 & WA5 coming soon!

4

Recap: Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can do in 𝚯(1))

Conquer: Sort the left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

5

Merge Sort: Growth Function

How do we find a closed-form hypothesis?

6

Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

7

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

Merge Sort: Recursion Tree

Each time we move down a level,
we split the sequence in half

8

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

Merge Sort: Recursion Tree

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in

half, and combining the sorted
lists after they are sorted by the

lower levels

9

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

Merge Sort: Recursion Tree

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in

half, and combining the sorted
lists after they are sorted by the

lower levels

What is the total cost of each level?

10

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

Merge Sort: Recursion Tree

What is the total cost of each level? 𝚯(n)

11

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in

half, and combining the sorted
lists after they are sorted by the

lower levels

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

Merge Sort: Recursion Tree

What is the total cost of each level? 𝚯(n)

12

How many levels are there?
How many times can we divide n in half?

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in

half, and combining the sorted
lists after they are sorted by the

lower levels

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1

…

Merge Sort: Recursion Tree

Because we divide the
input size in half at each
level, we have log(n) levels

log(n)

Hypothesis: The cost of merge sort is n log(n) 13

What is the total cost of each level? 𝚯(n)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in

half, and combining the sorted
lists after they are sorted by the

lower levels

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … …… … … …

Merge Sort: Proof by Induction

Base Case: T(1) ≤ c 1 log(1)

c0 ≤ 0

T(2) ≤ c 2 log(2)

2c0 + c1 + 2c2 ≤ 2c

True when c = c0 + c1 + c2

14

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

15

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

16

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

17

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

18

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

19

Merge Sort: Proof by Induction

20

Merge Sort: Proof by Induction

21

Merge Sort: Proof by Induction

Which is true for any

and

22

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort: Follow Up

23

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort: Follow Up

24

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort: Follow Up

25

QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

26

QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

27

QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[smaller than pivot], pivot, [larger than pivot]

28

QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[smaller than pivot], pivot, [larger than pivot]

How do we pick a pivot?

29

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

30

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

31

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

32

If we pick 8, the median value, we'll end up
dividing our list in half during the divide step

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

33

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

34

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

35

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

36

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

37

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

38

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

39

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

40

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

41

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

42

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

43

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

44

QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 45

QuickSort: Ideal Example

If our pivot was the median value, then our list would be split in half by the
divide step, resulting in the same structure as MergeSort…

…However, once we finish recursively dividing, we are done! No need for a
combine step at all!

46

QuickSort: Idealized Algorithm

To sort an array of size n:

1. Pick a pivot value (median?)
2. Swap values until:

a. elements at [1, n/2) are ≤ pivot
b. elements at [n/2, n) are > pivot

3. Recursively sort the lower half
4. Recursively sort the upper half

47

Great! So…how do we find
the median…?

48

Great! So…how do we find
the median…?

Finding the median takes
O(n log(n)) for an unsorted array :(

49*** Actually…it can be done in O(n) but with prohibitively high constant factors

QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?

50

QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?

51

Divide cost is O(n), Combine cost is 0

QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?

Compare to Merge Sort:

52

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)? (even if it's not ideal)

Idea: Pick it randomly! On average, half the values will be lower.

53

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)? (even if it's not ideal)

Idea: Pick it randomly! On average, half the values will be lower.

54

QuickSort: Attempt #2

To sort an array of size n:

1. Pick a value at random as the pivot
2. Swap values until the array is subdivided into:

a. low: array elements < pivot
b. pivot
c. high: array elements > pivot

3. Recursively sort low
4. Recursively sort high

55

QuickSort: Runtime

What is the worst-case runtime?

56

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

57

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

58

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

59

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8

60

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8

...

61

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

62

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

63

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

Remember: This is called the unqualified runtime…we don't take any extra
context into account

64

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

65

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

66

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

67

QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?

68

QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?

69

There are n
possible outcomes,

ranging from
picking the ideal
(median) to the

worst case (biggest
or smallest)

Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

70

Probability Theory (Great Class…)

If I roll a d6 (6-sided die) x times,

what is the average roll over all possible outcomes?

71

A single die roll

If I rolled a d6 1 time…

Roll Probability Outcome

⚀ 1/6 1

⚁ 1/6 2

⚂ 1/6 3

⚃ 1/6 4

⚄ 1/6 5

⚅ 1/6 6
72

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

73

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

74

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

We refer to the expected value of a random variable as E[X]

75

Expected Value

If I roll a 6-sided die, the probability of a particular side being rolled is ⅙

If X is a random variable representing this die roll, then the expected value of X is:

76

Expected Value

If I roll a 20-sided die, the probability of a particular side being rolled is 1/20

If X is a random variable representing this die roll, then the expected value of X is:

77

Expected Value

If I roll an n-sided die, the probability of a particular side being rolled is 1/n

If X is a random variable representing this die roll, then the expected value of X is:

78

Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y] and E[cX] = cE[X]

79

Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y] and E[cX] = cE[X]

What if we roll a d6 twice? What do we expect the sum to be?

80

Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y] and E[cX] = cE[X]

What if we roll a d6 twice? What do we expect the sum to be?

If X and Y are our dice rolls, E[X + Y] = E[X] + E[Y] = 3.5 + 3.5 = 7

or alternatively

E[2X] = 2E[X] = 2 * 3.5 = 7 81

Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

82

Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

83

…Picking a pivot is like rolling an n-sided die

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

84

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

85

This would be our
runtime if we

randomly pick the
smallest pivot

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

86

This would be our
runtime if we

randomly pick the
second smallest

pivot

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

87

This would be our
runtime if we

randomly pick the
third smallest pivot

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

88

This would be our
runtime if we

randomly pick the
third smallest pivot

…etc
and each pivot has

a 1/n chance of
being selected

QuickSort Runtime

…and convert it to the expected runtime over the variable X

89

QuickSort Runtime

…and convert it to the expected runtime over the variable X

This growth function represents the expected number of steps we must
take to sort using QuickSort…and just like any other growth function, we

can find O, 𝛀, and potentially 𝚯 bounds

QuickSort Runtime

Expected value is linear, so we can be split up
91

QuickSort Runtime

92

QuickSort Runtime

How are these two terms related?
93

QuickSort Runtime

94

QuickSort Runtime

95

QuickSort Runtime

96

QuickSort Runtime

97

QuickSort Runtime

98

QuickSort Runtime

They are equivalent!!

99

QuickSort Runtime

100

QuickSort Runtime

This is a summation of multiple random variables, and expectation is linear
101

QuickSort Runtime

102

Back to Induction

Hypothesis: E[T(n)] ∈ O(n log(n))

103

Note that our hypothesis is now about the EXPECTED
runtime…that is what we are trying to prove

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

104

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

105

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

106

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

107

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

108

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

True for any c ≥ c0 + c1

109

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

110

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

111

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Our i here is always less
than n, so we can use
our assumption to
substitute

112

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

113

Inductive Case

114

Inductive Case

115

Inductive Case

116

Inductive Case

117

Inductive Case

118

Inductive Case

119

QuickSort

So…is QuickSort O(n log(n))...?

No! It is expected to be, but that is not a guarantee

120

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average/Expected Bound
…we don't have any guarantees

121

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average/Expected Bound
…we don't have any guarantees

← Unqualified runtime

122

