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Warm-Up Question

2

What sorting algorithms have we seen, what are their complexities, and 
what benefits can we get from data that is sorted?



Warm-Up Question

3

What sorting algorithms have we seen, what are their complexities, and 
what benefits can we get from data that is sorted?

BubbleSort, SelectionSort, InsertionSort - O(n2)

MergeSort, HeapSort - O(n log n)

Why Sort? Searching sorted data can be faster (binary vs linear search)



Announcements

● Midterm 2 Grading in Progress
● PA3 & WA5 coming soon!
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Recap: Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can do in 𝚯(1))

Conquer: Sort the left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

5



Merge Sort: Growth Function

How do we find a closed-form hypothesis?
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Merge Sort: Recursion Tree

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)
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𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1



Merge Sort: Recursion Tree

Each time we move down a level, 
we split the sequence in half
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Merge Sort: Recursion Tree

Each time we move down a level, 
we split the sequence in half

Each node is labeled with the total 
cost to dividing the sequence in 

half, and combining the sorted 
lists after they are sorted by the 

lower levels
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Merge Sort: Recursion Tree

Each time we move down a level, 
we split the sequence in half

Each node is labeled with the total 
cost to dividing the sequence in 

half, and combining the sorted 
lists after they are sorted by the 

lower levels

What is the total cost of each level?
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Merge Sort: Recursion Tree

What is the total cost of each level? 𝚯(n)
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Each time we move down a level, 
we split the sequence in half

Each node is labeled with the total 
cost to dividing the sequence in 

half, and combining the sorted 
lists after they are sorted by the 

lower levels
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Merge Sort: Recursion Tree

What is the total cost of each level? 𝚯(n)
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How many levels are there?
How many times can we divide n in half?

Each time we move down a level, 
we split the sequence in half

Each node is labeled with the total 
cost to dividing the sequence in 

half, and combining the sorted 
lists after they are sorted by the 

lower levels

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … … …… … … …

input size: n

input size: n/2

input size: n/4

input size: 1



…

Merge Sort: Recursion Tree

Because we divide the 
input size in half at each 
level, we have log(n) levels

log(n)

Hypothesis: The cost of merge sort is n log(n) 13

What is the total cost of each level? 𝚯(n)

Each time we move down a level, 
we split the sequence in half

Each node is labeled with the total 
cost to dividing the sequence in 

half, and combining the sorted 
lists after they are sorted by the 

lower levels

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

𝚯(1) 𝚯(1)

… … …… … … …



Merge Sort: Proof by Induction

Base Case: T(1) ≤ c 1 log(1)

c0 ≤ 0

T(2) ≤ c 2 log(2)

2c0 + c1 + 2c2 ≤ 2c

True when c = c0 + c1 + c2
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Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)
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Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)
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Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:
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Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:
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Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:
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Merge Sort: Proof by Induction
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Merge Sort: Proof by Induction
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Merge Sort: Proof by Induction

Which is true for any

and
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Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort: Follow Up
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Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort: Follow Up
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QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?
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QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value
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QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[ smaller than pivot ], pivot, [ larger than pivot ]
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QuickSort: Intuition

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[ smaller than pivot ], pivot, [ larger than pivot ]

How do we pick a pivot?
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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If we pick 8, the median value, we'll end up 
dividing our list in half during the divide step



QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

35



QuickSort: Ideal Example
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[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]
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QuickSort: Ideal Example

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 45



QuickSort: Ideal Example

If our pivot was the median value, then our list would be split in half by the 
divide step, resulting in the same structure as MergeSort…

…However, once we finish recursively dividing, we are done! No need for a 
combine step at all!
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QuickSort: Idealized Algorithm

To sort an array of size n:

1. Pick a pivot value (median?)
2. Swap values until:

a. elements at [1, n/2) are ≤ pivot
b. elements at [n/2, n) are > pivot

3. Recursively sort the lower half
4. Recursively sort the upper half
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Great! So…how do we find 
the median…?
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Great! So…how do we find 
the median…?

Finding the median takes 
O(n log(n)) for an unsorted array :(

49*** Actually…it can be done in O(n) but with prohibitively high constant factors



QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?
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QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?

51

Divide cost is O(n), Combine cost is 0



QuickSort: Hypothetical

Imagine a world where we can obtain an ideal pivot in O(1).
Now what is our growth function?

Compare to Merge Sort:

52



QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)? (even if it's not ideal)

Idea: Pick it randomly! On average, half the values will be lower.
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QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)? (even if it's not ideal)

Idea: Pick it randomly! On average, half the values will be lower.
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QuickSort: Attempt #2

To sort an array of size n:

1. Pick a value at random as the pivot
2. Swap values until the array is subdivided into:

a. low: array elements < pivot
b. pivot
c. high: array elements > pivot

3. Recursively sort low
4. Recursively sort high

55



QuickSort: Runtime

What is the worst-case runtime?
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QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]
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QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]
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QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8
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QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8
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QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8

...

61



QuickSort: Worst-Case Runtime

What is the worst-case runtime?
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QuickSort: Worst-Case Runtime

What is the worst-case runtime?
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QuickSort: Worst-Case Runtime

What is the worst-case runtime?

Remember: This is called the unqualified runtime…we don't take any extra 
context into account
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QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?
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QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?
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QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?
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QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?
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QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?

69

There are n 
possible outcomes, 

ranging from 
picking the ideal 
(median) to the 

worst case (biggest 
or smallest)



Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

70



Probability Theory (Great Class…)

If I roll a d6 (6-sided die) x times,

what is the average roll over all possible outcomes?
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A single die roll

If I rolled a d6 1 time…

Roll Probability Outcome

⚀ 1/6 1

⚁ 1/6 2

⚂ 1/6 3

⚃ 1/6 4

⚄ 1/6 5

⚅ 1/6 6
72



Expected Value

The Expected Value of a random variable (ie the number rolled on the d6) 
is the sum of all outcomes times the probability of that outcome
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Expected Value

The Expected Value of a random variable (ie the number rolled on the d6) 
is the sum of all outcomes times the probability of that outcome
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Expected Value

The Expected Value of a random variable (ie the number rolled on the d6) 
is the sum of all outcomes times the probability of that outcome

We refer to the expected value of a random variable as E[X]
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Expected Value

If I roll a 6-sided die, the probability of a particular side being rolled is ⅙

If X is a random variable representing this die roll, then the expected value of X is:
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Expected Value

If I roll a 20-sided die, the probability of a particular side being rolled is 1/20

If X is a random variable representing this die roll, then the expected value of X is:
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Expected Value

If I roll an n-sided die, the probability of a particular side being rolled is 1/n

If X is a random variable representing this die roll, then the expected value of X is:
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Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y]    and    E[cX] = cE[X]
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Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y]    and    E[cX] = cE[X]

What if we roll a d6 twice? What do we expect the sum to be?
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Linearity of Expectation

Expected Value is Linear; ie:

E[X+Y] = E[X] + E[Y]    and    E[cX] = cE[X]

What if we roll a d6 twice? What do we expect the sum to be?

If X and Y are our dice rolls, E[X + Y] = E[X] + E[Y] = 3.5 + 3.5 = 7

or alternatively

E[2X] = 2E[X] = 2 * 3.5 = 7 81



Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n
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Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

83

…Picking a pivot is like rolling an n-sided die



QuickSort Runtime

Now we can write our runtime function in terms of random variables:
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QuickSort Runtime

Now we can write our runtime function in terms of random variables:
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This would be our 
runtime if we 

randomly pick the 
smallest pivot



QuickSort Runtime

Now we can write our runtime function in terms of random variables:
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This would be our 
runtime if we 

randomly pick the 
second smallest 

pivot



QuickSort Runtime

Now we can write our runtime function in terms of random variables:
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This would be our 
runtime if we 

randomly pick the 
third smallest pivot



QuickSort Runtime

Now we can write our runtime function in terms of random variables:

88

This would be our 
runtime if we 

randomly pick the 
third smallest pivot

…etc
and each pivot has 

a 1/n chance of 
being selected



QuickSort Runtime

…and convert it to the expected runtime over the variable X
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QuickSort Runtime

…and convert it to the expected runtime over the variable X

This growth function represents the expected number of steps we must 
take to sort using QuickSort…and just like any other growth function, we 

can find O, 𝛀, and potentially 𝚯 bounds



QuickSort Runtime

Expected value is linear, so we can be split up
91



QuickSort Runtime
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QuickSort Runtime

How are these two terms related?
93



QuickSort Runtime
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QuickSort Runtime
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QuickSort Runtime
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QuickSort Runtime
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QuickSort Runtime
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QuickSort Runtime

They are equivalent!!
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QuickSort Runtime

100



QuickSort Runtime

This is a summation of multiple random variables, and expectation is linear
101



QuickSort Runtime

102



Back to Induction

Hypothesis: E[T(n)] ∈ O(n log(n))

103

Note that our hypothesis is now about the EXPECTED 
runtime…that is what we are trying to prove



Base Case

Base Case: E[T(2)] ≤ c (2 log(2))
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Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c
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Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c
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Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c
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Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c
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Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

True for any c ≥ c0 + c1
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Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n)) 
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Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n)) 
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Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n)) 

Our i here is always less 
than n, so we can use 
our assumption to 
substitute
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Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n)) 

113



Inductive Case
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Inductive Case
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Inductive Case
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Inductive Case
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Inductive Case
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Inductive Case
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QuickSort

So…is QuickSort O(n log(n))...?

No! It is expected to be, but that is not a guarantee
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What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in  cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average/Expected Bound
…we don't have any guarantees
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What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in  cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average/Expected Bound
…we don't have any guarantees

← Unqualified runtime
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