CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Lec 33: Hash Tables

mailto:epmikida@buffalo.edu

Announcements

e PA3 releasing tonight

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?
Wacky Idea: Have h(x) return a random value in [O,N)

(This makes apply impossible...but bear with me)

Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

1
E[b; ;] = N

Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

E

- n

Random Hash Function

n = number of elements in any bucket

N = number of buckets

)
1 if element 7 is assigned to bucket j
bz g = 5 .
\O otherwise
The expected
Only true if in any bucket j

bij and bij are
uncorrelated for anyi#i

n / number of elements
Z bii| =

(h(i) can’t be related to h(i’)) 8

Random Hash Function

n = number of elements in any bucket

N = number of buckets

)
1 if element 7 is assigned to bucket j
bz g = 5 .
\O otherwise
The expected
Only true if in any bucket j

bij and bij are
uncorrelated for anyi#i

n / number of elements
Z bii| =

...given this information, what do the
(h(i) can’t be related to h(i’) runtimes of our operations look liké?

Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

Expected runtime of add, contains, remove: O(n/N)

Worst-Case runtime of add, contains, remove: O(n)

10

Hash Functions In the Real-World

Examples

e SHA256 «— Used by GIT

e MD5, BCRYPT <« Used by unix login, apt
e MurmurHash3 <« Used by Scala

hash(x) is pseudo-random

e hash(x) ~ uniform random value in [0, INT_MAX)

e hash(x) always returns the same value for the same x
e hash(x) is uncorrelated with hash(y) forall x zy

11

Hash Functions In the Real-World

Examples
e SHA256 «— Used by GIT
e MD5, BCRYPT <« Used by unix login, apt

P MurmurHash3 «— Used by Scala We then use modulus to fit this
random value into the size of

hash(x) is pseudo-random our hash table
e hash(x) ~ uniform random value in [0, INT_MAX)
e hash(x) always returns the same value for the same x

e hash(x) is uncorrelated with hash(y) for all x zy

12

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), suchthatn=q *d +r.

13

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), suchthatn=q *d +r.

/1N

quotient divisor remainder

14

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

15

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

16

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

17

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

18

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

0 1 2 3|4 5 6

0 1 2 3 4) 6
7/ 8 9 10 11 12 13
14 15 16 17 18 19 20

19

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

0 1 2 3|4 5 6

If my hash table has 7 buckets, and | insert an element with hash code 73,
what bucket would it go in?

20

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q *d +r. (It returns the remainder of n / d)

0 1 2 3|4 5 6

If my hash table has 7 buckets, and | insert an element with hash code 73,
what bucket would it goin? 73 % 7 =3

21

Quick Note on Java

e Object::hashCode() is a member function in Java that returns a

pseudo-random integer for every object
o When we define our own objects, we can also override this function (see
BZPair in PA3)

e Small issue: hashCode() can return negative numbers
o Solution: Use Math.floorMod instead of regular modulus

22

Hash Function Recap

e We now have pseudo-random hash functions that run in O(1)

23

Hash Function Recap

e We now have pseudo-random hash functions that run in O(1)
o They act as if they are uniformly random
m Will evenly distribute elements to buckets
m hash(x) is uncorrelated with hash(y)

24

Hash Function Recap

e We now have pseudo-random hash functions that run in O(1)
o They act as if they are uniformly random
m Will evenly distribute elements to buckets
m hash(x) is uncorrelated with hash(y)
o They are deterministic (hash(x) will always return the same value)

25

Hash Function Recap

e We now have pseudo-random hash functions that run in O(1)
o They act as if they are uniformly random
m Will evenly distribute elements to buckets
m hash(x) is uncorrelated with hash(y)
o They are deterministic (hash(x) will always return the same value)

e We can use these hash functions to determine which bucket an
arbitrary element belongs in in O(1) time

26

Hash Function Recap

e We now have pseudo-random hash functions that run in O(1)
o They act as if they are uniformly random
m Will evenly distribute elements to buckets
m hash(x) is uncorrelated with hash(y)
o They are deterministic (hash(x) will always return the same value)

e We can use these hash functions to determine which bucket an
arbitrary element belongs in in O(1) time

e There are expected to be n/N elements in that bucket
o So runtime for all operations is expected 0(1) + O(n/N) = expected O(n)

27

Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

28

Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

29

Hash Functions + Buckets

n n

Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

Fixana _ and start requiring thata < o

ax

30

Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

Fixana _ and start requiring thata < o

ax

What do we do when this constraint is violated?

31

Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

Fixana _ and start requiring thata < o

ax

What do we do when this constraint is violated? Resize!

32

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array fromN_,toN__

2. Rehash all of the elements from their old bucket to their new bucket
a. Element x moves from hash(x) % N_,, to hash(x) % N

new

33

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in?

01 2 3 4|5

34

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belongin? 65% 6 = 5

0 1 2 3 4 B

Now we want to resize the array to size 8. Where do we move x?

O 1 2|3 4 5 6|7

35

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belongin? 65% 6 = 5

01 2 3 4 B8

Now we want to resize tWhere do we move x? 65 % 8 =1

o P2 3 4 5 6 7

36

Rehashing

How long will it take to rehash every element after we resize?

Related Question: How do we iterate through a hash table?

37

Ilterating over a Hash Table

o 1 s PR E

Ilterating over a Hash Table

Start at the first bucket

39

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

40

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket
Move to the next bucket ?

41

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket ?

...and repeat

42

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

...and repeat

43

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket ?

...and repeat

44

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

...and repeat

45

Ilterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

...and repeat

46

Ilterating over a Hash Table

Start at the first bucket ‘

Iterate through that bucket

Move to the next bucket

...and repeat

47

Ilterating over a Hash Table

Start at the first bucket
o 1 & 3
Iterate through that bucket
Move to the next bucket
...and repeat
D F A C E B

How long does it take?

48

Ilterating over a Hash Table

Start at the first bucket
o 1 & 3
Iterate through that bucket
Move to the next bucket
...and repeat
D F A C E B

How long does it take? O(N + n)

49

Ilterating over a Hash Table

Start at the first bucket
o 1 & 3
Iterate through that bucket
Move to the next bucket
...and repeat
D F A C E B

How long does it take? O(N + n)

Visit every bucket 50

Ilterating over a Hash Table

Start at the first bucket
o 1 & 3
Iterate through that bucket
Move to the next bucket
...and repeat
D F A C E B

How long does it take? O(N + n)

Visit every bucket \ Visit every element in each bucket 51

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

52

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs 0(1)

53

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs 0(1)

lterating through each element costs O(N + n)

54

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs 0(1)
lterating through each element costs O(N + n)

Rehashing costs: O(N + n)

55

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array fromN_,toN__

2. Rehash all of the elements from their old bucket to their new bucket
a. Element x moves from hash(x) % N_,, to hash(x) % N

new

56

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array fromN_,,to N

new

2. Rehash all of the elements from their old bucket to their new bucket
a. Element x moves from hash(x) % N_,, to hash(x) % N

new

How long does this take?

1. Allocate the new array: 0(1)

2. Rehash every element from the old array to the new: O(N_,, + n)
3. Free the old array: 0(1)

Total: O(N_,, + n)

57

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array fromN_,,to N

new

2. Rehash all of the elements from their old bucket to their new bucket
a. Element x moves from hash(x) % N_,, to hash(x) % N

new

How long does this take? How do we pick N__?
1. Allocate the new array: 0(1)
2. Rehash every element from the old array to the new: O(N_,, + n)
3. Free the old array: 0(1)

Total: O(N_,, + n)

58

Rehashing

Whenever o. > a__, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:
1. Firstrehash happensatn, = a__ x N: goes from Nto 2N

59

Rehashing

Whenever o. > a__, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:

1. Firstrehash happensatn, = a__ x N: goes from Nto 2N
2. Second rehash happens atn,=a__ x 2N: goes from 2N to 4N

60

Rehashing

Whenever o. > a__, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:

1. Firstrehash happensatn, = a__ x N: goes from Nto 2N

2. Second rehash happens atn,=a__ x 2N: goes from 2N to 4N
3. Third rehash happens atn, =a__ x 4N: goes from 4N to 8N

61

Rehashing

Whenever o. > a__, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:

1. Firstrehash happensatn, = a__ x N: goes from Nto 2N

2. Second rehash happens atn,=a__ x 2N: goes from 2N to 4N
3. Third rehash happens atn, =a__ x 4N: goes from 4N to 8N

j jthrehash happensatn =« x 2-1N: goes from 2N to 2N

62

Total Work

With n insertions, choose j s.t. n = 2o,

ax
ZJ =n / amax
i=log(n/a,,)

j=log(n) - log(a__)

jslog(n) <« Number of rehashes

63

Total Work

Rehashes required: = log(n)

The ith rehash: 0(2'N)

log(n) log(n)
Y O@2N)=0(N > 2| =002 —1)=0(n)

1=0 1=0

So 0(n) work is required to do n insertions — Insert cost is amortized 0(1)

64

Runtime for contains (x)

Expected Runtime:

65

Runtime for contains (x)

Expected Runtime:
1. Find the bucket (call our hash function): O(c,__,) = O(1)

66

Runtime for contains (x)

Expected Runtime:
1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a - cequa,,.ty) = 0(1)

67

Runtime for contains (x)

Expected Runtime:
1. Find the bucket (call our hash function): O(c,__,) = 0(1)
2. Find the record in the bucket: O(a - ¢ = 0(1)

equality)

Remember: we don't let a exceed a constant value

68

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Total: O(c, ,+a-c, qua,,.ty) = 0(1)

equality)

69

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Total: O(c, ,+a-c, qua,,.ty) = 0(1)

equality)

Ungualified Worst-Case:

70

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Total: O(c, ,+a-c, qua,,.ty) = 0(1)

equality)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(c,) = 0(1)

71

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Total: O(c, ,+a-c, qua,,.ty) = 0(1)

equality)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(c,) = 0(1)
2. Find the record in the bucket: O(n - cequah.ty) = 0(n)

72

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = 0(1)
2. Find the record in the bucket: O(a - cequality) = 0(1)

3. Total: O(c, ,+a-c o(1)

equality) =
Ungualified Worst-Case:

1. Find the bucket (call our hash function): O(c,__,) = 0(1)
2. Find the record in the bucket: O(n - cequality) = 0(n)

Note: The expected nhumber of equality checks and the worst-case
number of equality checks are where these costs differ 73

Runtime for contains (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Total: O(c, ,+a-c, qua,,.ty) = 0(1)

equality)

Unqualified Worst-Case:

1. Find the bucket (call our hash function): O(c,) = 0(1)
2. Find the record in the bucket: O(n - cequah.ty) = 0(n)

3. Total:0(c,.,+n-c = 0(n)

equality)

74

Runtime for remove (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Remove (by reference): 0(1)

4. Total: O(c,.,+a-cC +1)=0(1)

equality)

equality
Unqualified Worst-Case:

1. Find the record in the bucket: O(n - cequah.ty) = 0(n)
2. Total: O(c,.,+n-c + 1) = O(n)

equality

75

Runtime for remove (x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = 0(1)

2. Find the record in the bucket: O(a. - ¢ = 0(1)

3. Remove (by reference): 0(1)

4. Total: O(ch A +q-C + 1) = 0(1) Only one extra constant-time step to remove
as

equality)

equality
Ungualified Worst-Case:

1. Find the record in the bucket: O(n - cequah.ty) = 0(n)
2. Total: O(c,.,+n-c + 1) = O(n)

equality

76

Runtime for insert(x)

Expected Runtime:

1. Find the bucket (call our hash function): O(c,__,) = O(1)
2. Remove x from bucket if present: O(e - ¢
3. Prepend to bucket: 0(1)
4
3

equality +1)

Rehash if needed: O(n - ¢, _, + N) (amortized O(1))

Total: O(c, ., ta-cC +3) = 0(1)

equality

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n - ¢
2. Total: O(c, ., +n-c_ . +3)=0(n)

equality

+1) = 0(n)

equality

77

Runtime for insert(x)

Expected Runtime:

1.
2.
3.
4
)

Find the bucket (call our hash function): O(c,) = O(1)
Remove x from bucket if present: O(a. - Coquatity + 1)

Prepend to bucket: 0(1) One additional constant-time
step to prepend, and then

Rehash if needed: O(n - ¢,_, + N) (amortized O(1)) potentially the need to

. . - rehash, but that is amortized
Total: O(c, ., ta-cC +3) = 0(1)

equality 0(1)

Ungualified Worst-Case:

1.
2.

Remove x from bucket if present: O(n - ¢ + 1) = O(n)

Total: O(c,, ., +n-c + 3) = 0(n)

equality

equality 78

