
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 33: Hash Tables

mailto:epmikida@buffalo.edu

Announcements

● PA3 releasing tonight

2

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

3

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Wacky Idea: Have h(x) return a random value in [0,N)

(This makes apply impossible…but bear with me)

4

Random Hash Function

5

Random Hash Function

6

Random Hash Function

7

Random Hash Function

8

Random Hash Function

…given this information, what do the
runtimes of our operations look like?9

Random Hash Function

Expected runtime of add, contains, remove: O(n/N)

Worst-Case runtime of add, contains, remove: O(n)

10

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

11

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

We then use modulus to fit this
random value into the size of
our hash table

12

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r.

13

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r.

quotient divisor remainder

14

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

15

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

16

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

17

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6
7 8 9 10 11 12 13

18

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20

19

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in?

0 1 2 3 4 5 6

20

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in? 73 % 7 = 3

0 1 2 3 4 5 6

21

Quick Note on Java

● Object::hashCode() is a member function in Java that returns a
pseudo-random integer for every object
○ When we define our own objects, we can also override this function (see

BZPair in PA3)
● Small issue: hashCode() can return negative numbers

○ Solution: Use Math.floorMod instead of regular modulus

22

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)

23

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

24

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)

25

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time

26

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time
● There are expected to be n/N elements in that bucket

○ So runtime for all operations is expected O(1) + O(n/N) = expected O(n)

27

Hash Functions + Buckets

28

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

29

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

30

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

31

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!

32

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

33

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in?

0 1 2 3 4 5

34

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x?

0 1 2 3 4 5X

0 1 2 3 4 5 6 7
35

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x? 65 % 8 = 1

0 1 2 3 4 5X

0 1 2 3 4 5 6 7X

36

Rehashing

How long will it take to rehash every element after we resize?

Related Question: How do we iterate through a hash table?

37

Iterating over a Hash Table

0 1 2 3 4 5 6CD A B
EF

38

Iterating over a Hash Table

Start at the first bucket
0 1 2 3 4 5 6CD A B

EF

39

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket
0 1 2 3 4 5 6CD A B

EF

40

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

0 1 2 3 4 5 6CD A B
EF

41

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

42

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F

43

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F

44

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A

45

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A C E

46

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A C E B

47

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take?

0 1 2 3 4 5 6CD A B
EF

D F A C E B

48

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

49

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Visit every bucket 50

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Visit every bucket Visit every element in each bucket 51

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

52

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

53

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

Iterating through each element costs O(N + n)

54

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

Iterating through each element costs O(N + n)

Rehashing costs: O(N + n)

55

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

56

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

57

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

How do we pick Nnew?

58

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N

59

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N

60

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N
3. Third rehash happens at n3 = 𝛂max ⨉ 4N: goes from 4N to 8N

61

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayLists)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N
3. Third rehash happens at n3 = 𝛂max ⨉ 4N: goes from 4N to 8N

…

j. jth rehash happens at nj = 𝛂max ⨉ 2j-1N: goes from 2j-1N to 2jN

62

Total Work

With n insertions, choose j s.t. n = 2j𝛂max

2j = n / 𝛂max

j = log (n / 𝛂max)

j = log(n) - log(𝛂max)

j ≤ log(n) ← Number of rehashes

63

Total Work

Rehashes required: ≤ log(n)

The ith rehash: O(2iN)

So O(n) work is required to do n insertions → Insert cost is amortized O(1)

64

Runtime for contains(x)

Expected Runtime:

65

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)

66

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)

67

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)

Remember: we don't let 𝛂 exceed a constant value

68

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

69

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:

70

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)

71

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)

72

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)

Note: The expected number of equality checks and the worst-case
number of equality checks are where these costs differ 73

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)
3. Total: O(chash + n · cequality) = O(n)

74

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

75

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

Only one extra constant-time step to remove

76

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + 3) = O(n)

77

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + 3) = O(n)

One additional constant-time
step to prepend, and then
potentially the need to
rehash, but that is amortized
O(1)

78

