
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 34: Hash Table Variants

mailto:epmikida@buffalo.edu

Warm-Up Question

2

What is the load factor (𝛂)
of this HashTable?
A: 5 B: 0.8 C: 0.5 D: Not enough info

What is the max load factor (𝛂max)
of this HashTable?
A: 5 B: 0.8 C: 0.5 D: Not enough info

0 1 2 3 4 5 6 7 8 9A B C

D E

F

G

H

Warm-Up Question

3

What is the load factor (𝛂)
of this HashTable?
A: 5 B: 0.8 C: 0.5 D: Not enough info

What is the max load factor (𝛂max)
of this HashTable?
A: 5 B: 0.8 C: 0.5 D: Not enough info

0 1 2 3 4 5 6 7 8 9A B C

D E

F

G

H

n = 8
N = 10
𝛂 = n/N = 0.8

Announcements

● PA3 is out now
○ Testing due this Sunday, 4/27
○ Implementation due next Sunday, 5/4

● WA5 releasing this Monday

4

Recap of HashTables (so far…)

Current Design: HashTable with Chaining
● Array of buckets
● Each bucket is the head of a linked list (a "chain" of elements)

5

Runtime for contains(x)

Expected Runtime:

6

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)

7

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)

8

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)

Remember: we don't let 𝛂 exceed a constant value

9

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

10

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:

11

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)

12

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)

13

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)

Note: The expected number of equality checks and the worst-case
number of equality checks are where these costs differ 14

Runtime for contains(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)
3. Total: O(chash + n · cequality) = O(n)

15

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

16

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

Only one extra constant-time step to remove

17

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + N) = O(n)

18

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + N) = O(n)

One additional constant-time
step to prepend, and then
potentially the need to
rehash, but that is amortized
O(1)

19

Quick Note on Java

● Object::hashCode() is a member function in Java that returns a
pseudo-random integer for every object
○ When we define our own objects, we can also override this function (see

BZPair in PA3)
● Small issue: hashCode() can return negative numbers

○ Solution: Use Math.floorMod instead of regular modulus

20

HashTable Drawbacks?

…So the expected runtime of all operations is O(1)

Why would you ever use any other data structure?

21

HashTable Drawbacks?

…So the expected runtime of all operations is O(1)

Why would you ever use any other data structure?

● HashTables do not preserve ordering
● HashTables may waste a lot of memory
● Rehashing can be expensive
● Only guarantee on lookup time is that it is O(n)

22

HashTable Drawbacks?

…So the expected runtime of all operations is O(1)

Why would you ever use any other data structure?

● HashTables do not preserve ordering
● HashTables may waste a lot of memory
● Rehashing can be expensive
● Only guarantee on lookup time is that it is O(n)

These can be partially addressed by
some HashTable variations

23

Collision Resolution

When two records are assigned to the same bucket, it is called a collision
● With chaining, collisions are resolved by treating each bucket as a list
● May result in even more empty buckets (more wasted space)

Two more collision resolution techniques try to help with this issue
● Open Addressing
● Cuckoo Hashing

24

HashTables with Chaining

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 2

0 1 2 3 4 5 6BD A E
CF

25

HashTables with Chaining

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 2

0 1 2 3 4 5 6BD A E
CF

Collisions are resolved by adding the
element to the bucket's linked list

26

HashTables with Open Addressing

hash(A) = 4 ← no collision

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

27

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5 ← no collision

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

28

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

C

29

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B C

30

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2 ← no collision!

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CD

31

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6 ← collision! cascade to 0

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE

32

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4 ← collision! Cascade all the way to 1

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE F

33

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4 ← collision! Cascade all the way to 1

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE F

How does lookup work? 34

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

contains(F)

Bucket 4 does not contain F. Are we sure F
does not exist?

E

35

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 4 does not contain F. Are we sure F
does not exist? No…it could have cascaded!

E

36

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 5 does not contain F. Are we sure F
does not exist? No…it could have cascaded!

E

37

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 6 does not contain F. Are we sure F
does not exist? No…it could have cascaded!

E

38

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 0 does not contain F. Are we sure F
does not exist? No…it could have cascaded!

E

39

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 1 does not contain F. Are we sure F
does not exist? Yes! If F existed it would be
here, so contains(F) returns False.

E

40

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

Bucket 1 does not contain F. Are we sure F
does not exist? Yes! If F existed it would be
here, so apply(F) returns False.

E

What if we insert F then remove E?
41

contains(F)

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A B CD

contains(F) would fail in this case because it
would check bucket 0 and conclude F doesn't exist!

Remove must also deal with potential cascading!

What if we insert F then remove E?

F

42

Removals with Open Addressing

To remove elements with Open Addressing:

1. First find the element (if it exists)
2. Remove the element

a. Check all following elements in a contiguous block and move them up
b. Don't move any element Y to a position that comes before hash(Y)

43

Open Addressing Runtime

Cascading to the next bucket(s) is called probing
● Linear Probing: If collision, cascade to hash(X) + ci
● Quadratic Probing: If collision, cascade to hash(X) + ci2

Runtime Costs:
● Chaining is dominated by searching the chain
● Open Addressing is dominated by probing

○ In both cases, with low 𝛂 we expect operations to be O(1)
○ Open addressing will occupy more buckets (waste less space)

44

Cuckoo Hashing

Open Addressing can have arbitrarily long chains

Can we reduce the chance of cascading for some operations?

45

Cuckoo Hashing

Idea: Use two hash functions, hash1 and hash2

To insert a record X:

1. If hash1(X) and hash2(X) are both available, pick one at arbitrarily
2. If only one of those buckets is available, pick the available bucket
3. If neither is available, pick one arbitrarily and evict the record there

a. Insert X in this bucket
b. Insert the evicted record following the same procedure

46

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A

47

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

48

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

C can't go in either bucket, so evict one at
random (let's say B) and reinsert the evicted
element

C

49

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

50

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

51

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B D

52

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

53

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3?

54

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3? We will loop infinitely trying to
evict…so limit the number of eviction
attempts then do a full rehash 55

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of contains/remove?

56

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of contains/remove?

1. Check 2 different buckets: O(1)
2. That's it…no chaining, cascading etc…

Apply and remove are GUARANTEED O(1) with Cuckoo Hashing

57

HashTables as Sets

We've now seen HashTable's as an implementation of Sets

● HashSet in Java -> Expected O(1) runtime for add, contains, remove

What about HashMap? What is a map??

58

HashTables as Sets

We've now seen HashTable's as an implementation of Sets

● HashSet in Java -> Expected O(1) runtime for add, contains, remove

What about HashMap? What is a map??

● A map IS a set. It is a set of key-value pairs!

59

HashSets vs HashMaps

A F G H…B … Z

This was an example of a HashSet that stored movie titles (with
a bad hash function…but ignore that for now)

HalloweenGet OutBabadook Friday the
13th

60

HashSets vs HashMaps

A F G H…B … Z

This is an example of a HashMap that stores key value pairs where the
key is a movie title and the value is the movie object associated with that
title

(Halloween,⃞)(Get Out,⃞)(Babadook,⃞) (Friday the
13th,⃞)

61

name: "Babadook"
runtime: 92
year: 2014

name: "Friday the 13th"
runtime: 95
year: 1980

name: "Get Out"
runtime: 103
year: 2017

name: "Halloween"
runtime: 91
year: 1978

