CSE 250 Recitation

February 13 - 14: Asymptotic Analysis in Code

Analyzing Code/Algorithms

Remember the different types of control flow:

- Sequential (statements executed one after another)
 - Add the number of steps together
 - If I do A then B, the total cost is the cost to do A plus the cost to do B
- Selection (conditional execution of statements)
 - Our growth function will be a piecewise function
- Repetition (repeating execution of one or more statements)
 - Add up the total number of steps...with summations

Code Analysis

```
Structure ds = new Structure();
 2
   ds.initialize();
4
   for (int i = 0; i < n; i++) {
     Thing thing = createAThing(i, n);
 6
     ds.insertAThing(thing);
8
 9
  if (weFeelLikeIt())
     ds.computeSomething();
11
```

Function	Growth Function
Structure()	T _{new} =
ds.initialize()	T _{init} =
createAThing()	T _{create} =
ds.insertAThing()	T _{insert} =
weFeelLikeIt()	T _{cond} =
ds.computeSomthing()	T _{comp} =

Exercise: Write the growth function, T(n), that represents the runtime of this code

(start by writing it in terms of the other growth functions)

Growth Function

Here is the growth function you should have gotten

(If T_{cond} was pulled out of the piecewise that's fine too)

```
1|Structure ds = new Structure();
  ds.initialize();
  for (int i = 0; i < n; i++) {
    Thing thing = createAThing(i, n);
     ds.insertAThing(thing);
8
10|if (weFeelLikeIt())
11
     ds.computeSomething();
```

$$T(n) = T_{new} + T_{init} + \sum_{i=0}^{n-1} (T_{create} + T_{insert}) + \begin{cases} T_{cond} + T_{comp} & \text{if weFeelLikeIt}() \\ T_{cond} & \text{otherwise} \end{cases}$$

Finding Bounds

Exercise:

- 1. Update your growth function with the growth functions to the right
- 2. Find its closed form solution
- 3. Determine the O, Ω , and Θ bounds

Note: |x| is the notation for "size of x"

You may assume that **insertAThing** increases the size of the data structure by one, and nothing else changes its size

Function	Growth Function
Structure()	T _{new} = 5
ds.initialize()	T _{init} = 23
createAThing()	T _{create} = 6
ds.insertAThing()	$T_{insert} = 2 \cdot ds $
weFeelLikeIt()	$T_{cond} = 4n + 5$
ds.computeSomthing()	$T_{comp} = 3 \cdot ds ^3$

Getting the Closed Form Solution

$$T(n) = 5 + 23 + \sum_{i=0}^{n-1} (6+2i) + \begin{cases} 4n+5+3n^3 & \text{if we Feel Like It}() \\ 4n+5 & \text{otherwise} \end{cases}$$

$$T(n) = 28 + (5n+n^2) + \begin{cases} 4n+5+3n^3 & \text{if we Feel Like It}() \\ 4n+5 & \text{otherwise} \end{cases}$$

Finding Bounds (Big-0)

$$T(n) = 28 + (5n + n^2) + \begin{cases} 4n + 5 + 3n^3 & \text{if we Feel Like It}() \\ 4n + 5 & \text{otherwise} \end{cases}$$

$$O(1) + O(n^2) + O(n^3) = O(1 + n^2 + n^3) = O(n^3)$$

Finding Bounds (Big- Ω)

$$T(n) = 28 + (5n + n^2) + \begin{cases} 4n + 5 + 3n^3 & \text{if we Feel Like It}() \\ 4n + 5 & \text{otherwise} \end{cases}$$

$$\Omega(1) + \Omega(n^2) + \Omega(n) = \Omega(1 + n^2 + n) = \Omega(n^2)$$

Finding Bounds (Big-\textit{\theta})

$$T(n) = 28 + (5n + n^2) + \begin{cases} 4n + 5 + 3n^3 & \text{if we Feel Like It}() \\ 4n + 5 & \text{otherwise} \end{cases}$$

$$T(n) \in O(n^3)$$

 $T(n) \in \Omega(n^2)$

Since both of these bounds are $\underline{\text{tight}}$ then there does not exist an f(n) such that $T(n) \in \Theta(f(n))$

Finding Bounds (Big-\textit{\theta})

$$T(n) = 28 + (5n + n^2) + \begin{cases} 4n + 5 + 3n^3 & \text{if we Feel Like It}() \\ 4n + 5 & \text{otherwise} \end{cases}$$

Follow Up: What if T_{comp} was $3n^2$ instead? What if it was 3n?

Finding Bounds (Big-\textit{\theta})

$$T(n) = 28 + (5n + n^2) + \begin{cases} 4n + 5 + 3n^3 & \text{if we Feel Like It}() \\ 4n + 5 & \text{otherwise} \end{cases}$$

Follow Up: What if T_{comp} was $3n^2$ instead? What if it was 3n?

In both cases, T(n) would be in $O(n^2)$, $\Omega(n^2)$ and therefore $\Theta(n^2)$

Let $g(n) = 3n + n^2$. Prove that $g(n) \in O(n^2)$, $g(n) \in \Omega(n^2)$

First...what is the definition of big-O?

Let
$$g(n) = 3n + n^2$$
. Prove that $g(n) \in O(n^2)$, $g(n) \in \Omega(n^2)$

First...what is the definition of big-O?

$$g(n) \le c f(n)$$
, for all $n \ge n_0$ for some $c > 0$, and $n_0 \ge 0$

What is the definition of big- Ω ?

Let
$$g(n) = 3n + n^2$$
. Prove that $g(n) \in O(n^2)$, $g(n) \in \Omega(n^2)$

First...what is the definition of big-O?

$$g(n) \le c f(n)$$
, for all $n \ge n_0$ for some $c > 0$, and $n_0 \ge 0$

What is the definition of big- Ω ?

$$g(n) \ge c f(n)$$
, for all $n \ge n_0$ for some $c > 0$, and $n_0 \ge 0$

Exercise: Prove the following

$$g(n) = 3n + n^2$$

1.
$$g(n) \in O(n^2)$$

2.
$$g(n) \in \Omega(n^2)$$

3.
$$T(n) \in O(n^3)$$

4.
$$T(n) \in \Omega(n^2)$$

$$T(n) = n^2 + 5n + 28 + \begin{cases} 3n^3 + 4n + 5 & \text{if true} \\ 4n + 5 & \text{otherwise} \end{cases}$$

Hint: For T, consider the fact that it is either:

$$3n^3 + n^2 + 9n + 33$$
 OR $n^2 + 9n + 33$

More Examples

Prove the following:

$$12\log(10\times 2^n)\in \mathit{O}(n)$$

$$n^2 + n \log(n) \in O(2^n)$$

$$n^2 + 15n^3 \in \Omega(n)$$

$$\sum_{i=1}^{n} i \in \Omega(n^2)$$