
CSE 250 Recitation
February 20 - 21: ADTs, Amortized Runtime

List ADT

Discussion: Could these two methods be part of a valid implementation of the
List ADT (assume the rest of the methods are defined consistently with these)

get(idx):

 curr = last, i = 0

 while i < idx:

 i = i + 1

 curr = curr->prev

 return curr.value

add(v):

 node = new node(v)

 node->next = head

 head = node

List ADT

Discussion: Could these two methods be part of a valid implementation of the
List ADT (assume the rest of the methods are defined consistently with these)

Yes! Consider a user that adds 1, 2, 3, 4.

get(0)->1

get(1)->2

get(2)->3

get(3)->4

get(idx):

 curr = last, i = 0

 while i < idx:

 i = i + 1

 curr = curr->prev

 return curr.value

add(v):

 node = new node(v)

 node->next = head

 head = node

Set ADT

Exercise: Describe an implementation of the Set ADT using your SortedList
implementation from PA1.

Reminder: The methods of the Set ADT are add, contains, remove

add(elem): Adds elem to the set if it is not already present in the set

contains(elem): returns true if elem is in the set, false otherwise

remove(elem): removes elem and returns true, otherwise returns false

Set ADT

Discussion:

How does this
implementation differ
than the one from
lecture?

What differs when we
implement Bag?

SortedList data

add(elem):
 if !data.findRef(elem).isPresent():
 data.insert(elem)

contains(elem):
 return data.findRef(elem).isPresent()

remove(elem):
 node = data.findRef(elem)
 if node.isPresent():
 data.remove(node)
 return true
 return false

Amortized Runtime

If n calls to a function take 𝚯(f(n)) steps

Then the amortized runtime of that function is 𝚯(f(n)/n)

Cost of each call when the initial array size is 10, and newLength = data.length + 1

10 · 𝚯(1)

11 · 𝚯(1) + 12 · 𝚯(1) + 13 · 𝚯(1) + 14 · 𝚯(1) + … + n · 𝚯(1)

Cost of each call when the initial array size is 10, and newLength = data.length + 2

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 13 · 𝚯(1) + 15 · 𝚯(1) + … + n · 𝚯(1)

~n/2 terms ~n/2 terms

Cost of each call when the initial array size is 10, and newLength = data.length + 10

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 21 · 𝚯(1) + 31 · 𝚯(1) + … + n · 𝚯(1)

~9/10 · n terms ~1/10 · n terms

Cost of each call when the initial array size is 4, and newLength = data.length x 2

How can we sum up the total number of steps?
Let I represent the initial size

20I + (20I - 1) · 𝚯(1)

21I + (21I - 1) · 𝚯(1)

22I + (22I - 1) · 𝚯(1)

23I + (23I - 1) · 𝚯(1)

Amortized Runtime Analysis

1

2

3

4

5

6

7

public class Team {

 private List<Player> players;

 public void addPlayer(Player p) { /* ... */ }

 public void importRoster(File f) { /* ... */ }

 /* ... */

}

1

2

3

4

public void addPlayer(Player p) {

 System.out.println("Welcome to the team " + p.name());

 players.add(p);

}

Exercise: What are the unqualified and amortized runtime bounds of the addPlayer
method when List is a LinkedList? an ArrayList?

Amortized Runtime Analysis

1

2

3

4

5

6

7

public class Team {

 private List<Player> players;

 public void addPlayer(Player p) { /* ... */ }

 public void importRoster(File f) { /* ... */ }

 /* ... */

}

1

2

3

4

public void addPlayer(Player p) {

 System.out.println("Welcome to the team " + p.name());

 players.add(p);

}

Exercise: What are the unqualified and amortized runtime bounds of the addPlayer
method when List is a LinkedList? an ArrayList?

players is LinkedList players is ArrayList

addPlayer runtime Unqualified 𝚯(1)
Amortized 𝚯(1)

Unqualified O(n)
Amortized 𝚯(1)

Amortized Runtime Analysis

Exercise: What are the unqualified and amortized runtime bounds of the
importRoster method when List is a LinkedList? an ArrayList?

(You can assume that opening the file, reading a line, and creating a Player are
constant-time calls)

1

2

3

4

5

6

7

8

9

public void importRoster(File f) {

 BufferedReader br = new BufferedReader(new FileReader(f));

 String line;

 while (br.ready()) {

 String line = br.readLine();

 Player p = new Player(line);

 addPlayer(p);

 }

}

players is LinkedList players is ArrayList

addPlayer runtime Unqualified 𝚯(1)
Amortized 𝚯(1)

Unqualified O(n)
Amortized 𝚯(1)

Amortized Runtime Analysis

Exercise: What are the unqualified and amortized runtime bounds of the
importRoster method when List is a LinkedList? an ArrayList?

(You can assume that opening the file, reading a line, and creating a Player are
constant-time calls)

1

2

3

4

5

6

7

8

9

public void importRoster(File f) {

 BufferedReader br = new BufferedReader(new FileReader(f));

 String line;

 while (br.ready()) {

 String line = br.readLine();

 Player p = new Player(line);

 addPlayer(p);

 }

}

players is LinkedList players is ArrayList

addPlayer runtime Unqualified 𝚯(1)
Amortized 𝚯(1)

Unqualified O(n)
Amortized 𝚯(1)

importRoster runtime Unqualified 𝚯(n)
Amortized 𝚯(n)

Unqualified 𝚯(n)
Amortized 𝚯(n)

