
CSE 250 Recitation
Mar 6 - 7: Recursion



Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
● Be sorted
● Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left 
half or the right half



Binary Search Code
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int binarySearch(ArrayList<T> list, T target) {

  return binarySearch(list, target, 0, list.size() - 1);

}

// Searches the array from [start, end], returns -1 if target not found

int binarySearch(ArrayList<T> list, T target, int start, int end) {

  if (start > end) { return -1; }

  int mid = (start + end) / 2;

  T guess = list.get(mid);

  if(guess.equals(target)){ return mid; } // We found our target!

  else if(target.compareTo(guess) < 0) {  // Target is in the left half

    return binarySearch(list, target, start, mid - 1);

  } else {                                // Target is in the right half

    return binarySearch(list, target, mid + 1, end);

  }

}Exercise: Determine the growth function for the runtime of binarySearch



Runtime Growth Function



Runtime Growth Function

Exercise: Draw the recursion tree for this growth function.
Label the height in terms of n and each box with it's cost excluding recursive 
calls.



Recursion Tree for binarySearch

N items: 𝚯(1)

N/2 items: 𝚯
(1)

N/4 items: 𝚯
(1)

…

1 item: 𝚯(1)

log(n) levels

Exercise: Write the summation that 
represents the total amount of work 
shown in this recursion tree.

Consider how many levels are in the 
tree, and the cost of each level

Once you have a summation, 
simplify it to come up with a 
hypothesis for the runtime bound



Hypothesis

Exercise: Write the hypothesis as an inequality and prove a Base Case

Summation:

Hyptothesis:



Base Case



Base Case

22



Base Case

Exercise: Come up with an inductive hypothesis and prove the inductive step



Inductive Case

Assume:

Show:



Inductive Proof

Use definition of our 
growth function

This is from our assumption



Conclusion

The inequality is true for a base case (n = 2) as long as c ≥ c1 + c0

The inductive step showed that:
● If the inequality is true for n/2, then it is true for n as long as c ≥ c1

Therefore: If c ≥ c1 + c0 the inequality is true for all n ≥ 2

Therefore T(N) ∈ O(log(n))


