
CSE 250 Recitation
Mar 6 - 7: Recursion

Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
● Be sorted
● Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left
half or the right half

Binary Search Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

int binarySearch(ArrayList<T> list, T target) {

 return binarySearch(list, target, 0, list.size() - 1);

}

// Searches the array from [start, end], returns -1 if target not found

int binarySearch(ArrayList<T> list, T target, int start, int end) {

 if (start > end) { return -1; }

 int mid = (start + end) / 2;

 T guess = list.get(mid);

 if(guess.equals(target)){ return mid; } // We found our target!

 else if(target.compareTo(guess) < 0) { // Target is in the left half

 return binarySearch(list, target, start, mid - 1);

 } else { // Target is in the right half

 return binarySearch(list, target, mid + 1, end);

 }

}Exercise: Determine the growth function for the runtime of binarySearch

Runtime Growth Function

Runtime Growth Function

Exercise: Draw the recursion tree for this growth function.
Label the height in terms of n and each box with it's cost excluding recursive
calls.

Recursion Tree for binarySearch

N items: 𝚯(1)

N/2 items: 𝚯
(1)

N/4 items: 𝚯
(1)

…

1 item: 𝚯(1)

log(n) levels

Exercise: Write the summation that
represents the total amount of work
shown in this recursion tree.

Consider how many levels are in the
tree, and the cost of each level

Once you have a summation,
simplify it to come up with a
hypothesis for the runtime bound

Hypothesis

Exercise: Write the hypothesis as an inequality and prove a Base Case

Summation:

Hyptothesis:

Base Case

Base Case

22

Base Case

Exercise: Come up with an inductive hypothesis and prove the inductive step

Inductive Case

Assume:

Show:

Inductive Proof

Use definition of our
growth function

This is from our assumption

Conclusion

The inequality is true for a base case (n = 2) as long as c ≥ c1 + c0

The inductive step showed that:
● If the inequality is true for n/2, then it is true for n as long as c ≥ c1

Therefore: If c ≥ c1 + c0 the inequality is true for all n ≥ 2

Therefore T(N) ∈ O(log(n))

