CSE 250 Recitation

Mar 6 - 7: Recurs ion

Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
e Be sorted

e Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left
half or the right half

Binary Search Code

W 0o NO U1l D W N R

e = O =
A wiNvR OO

int binarySearch(ArraylList<T> list, T target) {
return binarySearch(list, target, 9, list.size() - 1);
}
// Searches the array from [start, end], returns -1 1if target not found
int binarySearch(ArraylList<T> list, T target, int start, int end) {
if (start > end) { return -1; }
int mid = (start + end) / 2;
T guess = list.get(mid);
if(guess.equals(target)){ return mid; } // We found our target!
else if(target.compareTo(guess) < 0) { // Target is in the LlLeft half
return binarySearch(list, target, start, mid - 1);
} else { // Target 1s 1in the right half
return binarySearch(list, target, mid + 1, end);

}

Exercise: Determine the growth function for the runtime of binarySearch

Runtime Growth Function

T(N) = I (%) + ©O(1) if target is not found
O(1) otherwise

Runtime Growth Function

T (%) + ¢, if target is not found
Co otherwise
Exercise: Draw the recursion tree for this growth function.

Label the height in terms of n and each box with it's cost excluding recursive
calls.

Recursion Tree for binarySearch

~

Exercise: Write the summation that
represents the total amount of work
shown in this recursion tree.

N items: O(1)

N/2 items: @
(1)

o).
T
[e .tggns : J S log(n) levels
-
o)

Consider how many levels are in the
tree, and the cost of each level

Once you have a summation,
simplify it to come up with a
hypothesis for the runtime bound

1 item: O(1)

_/

Hypothesis

Summation:

0(108 2 (N)) Hyptothesis:

D, 6(1) T € O(log,(N))
=1

Exercise: Write the hypothesis as an inequality and prove a Base Case

T(1) < c-log,(1)

T(2) < c-log,(2)
T(l) -+ Cq S C

C()—|-61§C

Exercise: Come up with an inductive hypothesis and prove the inductive step

Inductive Case

N N
A TI—| <c-1 —
o [2] ogz[z]

Show: T(N) <cC- lng(N)

Inductive Proof

T

Use definition of (K/
growth function
(N

This is from our assumption

T(N)

2>+Cl

N N
T(E) + c1 < ¢ - log, (5

>‘|—Cl

?
< c-logy(N)

?
< c-logy(N)

?
< c-logy(N)

(logy () — logy(2)) < ¢ - logy(N)

c1 <c

Conclusion

The inequality is true for a base case (n=2) aslongasczc, +c,

The inductive step showed that:
e If the inequality is true for n/2, then it is true forn as longas c = c,

Therefore: If c = ¢ + ¢, the inequality is true for alin = 2

Therefore T(N) € O(log(n))

