CSE 250 Recitation

Mar 6 - 7: Recurs ion




Binary Search

The binary search algorithm let's us effectively search a List

To work correctly and efficiently the List must:
e Be sorted

e Allow constant time random access (ie an Array)

It works by comparing our target to the midpoint, then searching only the left
half or the right half



Binary Search Code
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int binarySearch(ArraylList<T> list, T target) {
return binarySearch(list, target, 9, list.size() - 1);
}
// Searches the array from [start, end], returns -1 1if target not found
int binarySearch(ArraylList<T> list, T target, int start, int end) {
if (start > end) { return -1; }
int mid = (start + end) / 2;
T guess = list.get(mid);
if(guess.equals(target)){ return mid; } // We found our target!
else if(target.compareTo(guess) < 0) { // Target is in the LlLeft half
return binarySearch(list, target, start, mid - 1);
} else { // Target 1s 1in the right half
return binarySearch(list, target, mid + 1, end);

}

Exercise: Determine the growth function for the runtime of binarySearch



Runtime Growth Function

T(N) = I (%) + ©O(1) if target is not found
O(1) otherwise



Runtime Growth Function

T (%) + ¢, if target is not found
Co otherwise
Exercise: Draw the recursion tree for this growth function.

Label the height in terms of n and each box with it's cost excluding recursive
calls.



Recursion Tree for binarySearch
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Exercise: Write the summation that
represents the total amount of work
shown in this recursion tree.
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Consider how many levels are in the
tree, and the cost of each level

Once you have a summation,
simplify it to come up with a
hypothesis for the runtime bound

1 item: O(1)
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Hypothesis

Summation:

0(108 2 (N)) Hyptothesis:
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Exercise: Write the hypothesis as an inequality and prove a Base Case



T(1) < c-log,(1)






T(2) < c-log,(2)
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Exercise: Come up with an inductive hypothesis and prove the inductive step



Inductive Case
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Show: T(N) <cC- lng(N)



Inductive Proof
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This is from our assumption
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Conclusion

The inequality is true for a base case (n=2) aslongasczc, +c,

The inductive step showed that:
e If the inequality is true for n/2, then it is true forn as longas c = c,

Therefore: If c = ¢ + ¢, the inequality is true for alin = 2

Therefore T(N) € O(log(n))



