
CSE 250 Recitation
March 6 - 7: Graph Representations, PA2



Traversal Discussion

Consider finding a path from A to E:

1. How many unique paths are there?

2. Which has the fewest edges?
a. Which algo finds this path?

3. Which has the shortest distance?
a. Which algo finds this path?

4. Which path would DFS find?
B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)



Traversal Discussion

Consider finding a path from A to E:

1. How many unique paths are there?

2. Which has the fewest edges?
a. Which algo finds this path?

3. Which has the shortest distance?
a. Which algo finds this path?

4. Which path would DFS find?
B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Traversal Discussion

Consider finding a path from A to E:

1. How many unique paths are there? 2

2. Which has the fewest edges? ABE
a. Which algo finds this path? BFS

3. Which has the shortest distance? ACDE
a. Which algo finds this path? Djisktra's

4. Which path would DFS find? Either
B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



PA2: Testing Exercise

1. Draw out a graph (on a grid) containing at least 8 labeled vertices.
2. Label one of the vertices the starting vertex, and one the ending vertex.
3. Trade papers with a neighbor, and answer the following about their graph:

a. What is the path from start to finish with the fewest edges? Is it a unique path?
b. What is the path from start to finish of the shortest distance? Is it a unique path?
c. Are your answer to a and b the same? Why would it be problematic if they are?
d. Are the paths in a and b the only paths? Why would it be problematic if they are?
e. Name features that might show up in a map of Buffalo that are not present in this graph.
f. How would you change the graph to include some of these features?



PA2: Testing Discussion

Did you need to know how to implement BFS/Djikstra's to determine which 
paths should be found in your neighbors graph? No!

It's ok to have some very simple tests…but you should have complex ones too:
● If there's only one path…even a buggy implementation will probably find it
● If both BFS and Djikstra's return the same path it may hide some bugs
● Buffalo streets have: cycles, two way streets, one way streets, dead ends

○ Could these features expose bugs in your search? Your tests should have these features!



Traversal Discussion Revisited

Based on the previous exercise:

1. What characteristics of this graph 
make it a good test?

2. What characteristics does it lack?
3. What could you add/change/include in 

a different test to improve your tests?

B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Traversal Discussion Revisited

Discussion:

1. What does an edge list implementation 
of this graph look like?

B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Traversal Discussion Revisited

Discussion:

1. What does an edge list implementation 
of this graph look like?

A → B → C → D → E

(A,C) → (C,D) → (D,E) → (A,B) → (B,E)

B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Traversal Discussion Revisited

Discussion:

2. What does an adjacency list 
implementation of this graph look like?
(only include outgoing edges)

B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Traversal Discussion Revisited

Discussion:

2. What does an adjacency list 
implementation of this graph look like?
(only include outgoing edges)

A: (A,C), (A,B)
B: (B,E)
C: (C,D)
D: (D,E) B

A E

DC

(0,0)

(5,1)

(1,6)

(3,8) (7,8)

(9,6)
4

6.4 6.4

2.8 2.8



Graph Data Structures

Exercise:

1. Write the edge list representation of your graph on the back of your paper
2. Without looking at the visual representation of of your graph:

a. Write the adjacency list representation of your grap
b. Write out pseudocode to describe the process you used to convert from your edge list to 

your adjacency list
c. Determine the runtime of your algorithm in terms of n and m



Two Possibilities

Complexity?

Option 1

adjList = {}

for e in edges:

  adjList[e.from] += e

Option 2

adjList = {}

for v in vertices:

  for e in edges:

    if e.from == v:

      adjList[e.from] += e



Two Possibilities

Option 1: 𝚯(m)

adjList = {}

for e in edges:

  adjList[e.from] += e

Option 2: 𝚯(n ᐧ m)

adjList = {}

for v in vertices:

  for e in edges:

    if e.from == v:

      adjList[e.from] += e



Bonus Content: Tic Tac Toe Example

X

X

X

X

O
X

O
X

O
X

X O
X

O
X X

O
X

X

Note: This does not show all 
edges / vertices…

What is the out degree of the 
vertex for the empty board? 
What about the in degree?

What is the out degree of the 
vertex labeled A? B?

How many edges are in the 
full graph?

Is the in degree of every 
non-starting node 1?

A
B

C



Bonus Content: Tic Tac Toe Example

X

X

X

X

O
X

O
X

O
X

X O
X

O
X X

O
X

X
O

X

Note: This does not show all 
edges / vertices…

What is the out degree of the 
vertex for the empty board? 9 
What about the in degree? 0

What is the out degree of the 
vertex labeled A? B? 8, 7

How many edges are in the 
full graph? 9!

Is the in degree of every 
non-starting node 1? No ie C

A
B

C


