
CSE 250 Recitation
March 27 - 28: Stacks, Queues, Graph Traversals



Stacks vs Queues

MysterySequence seq = new MysterySequence()

seq.addSomething("A")

seq.addSomething("B")

seq.addSomething("C")

seq.addSomething("D")

print(seq.removeSomething())

print(seq.removeSomething())

print(seq.removeSomething())

seq.addSomething("E")

print(seq.removeSomething())

seq.addSomething("F")

print(seq.removeSomething())

seq.addSomething("G")

seq.addSomething("H")

print(seq.removeSomething())

print(seq.removeSomething())

print(seq.removeSomething())

Exercise:
What does the following 
code print when 
MysterySequence is a 
Stack? Queue?

What are the relevant 
operations for each?

What are their runtimes 
for different backing data 
structures?



Stacks vs Queues

MysterySequence seq = new MysterySequence()

seq.addSomething("A")

seq.addSomething("B")

seq.addSomething("C")

seq.addSomething("D")

print(seq.removeSomething())

print(seq.removeSomething())

print(seq.removeSomething())

seq.addSomething("E")

print(seq.removeSomething())

seq.addSomething("F")

print(seq.removeSomething())

seq.addSomething("G")

seq.addSomething("H")

print(seq.removeSomething())

print(seq.removeSomething())

print(seq.removeSomething())

Stack (LIFO)
====================
Prints: DCBEFHGA
Operations: push, pop
Runtimes: O(1)

Queue (FIFO)
====================
Prints: ABCDEFGH
Ops: enqueue,dequeue
Runtimes: O(1) * 
* amortized O(1) for enqueue with 
array-based implementation)



Graph Traversal - DFS

1. Insert the starting node into the [TODO]
2. While the [TODO] is not empty:

a. Remove a node from the [TODO]
b. For each of that nodes unvisited neighbors:

i. Mark the neighbor as visited
ii. Add it to our [TODO]

Example:
How does DFS starting at S progress?
How does the stack change at each step?
What does our edgeTo map look like at each step?
After the traversal, how can we find a path from S to H?



Graph Traversal Exercise - BFS

1. Insert the starting node into the [TODO]
2. While the [TODO] is not empty:

a. Remove a node from the [TODO]
b. For each of that nodes unvisited neighbors:

i. Mark the neighbor as visited
ii. Add it to our [TODO]

Exercise:
Perform on your paper the BFS traversal of this graph.
● Write out what the [TODO] looks like at each step.
● Write out what the edgeTo map looks like.
● Construct a path from S to H from the edgeTo map



Graph Traversal Exercise - Djikstra's

1. Insert the starting node into the [TODO]
2. While the [TODO] is not empty:

a. Remove a node from the [TODO]
b. If it not VISITED

i. Mark it as visited
ii. Add its unvisited neighbors to [TODO]

Exercise:
Perform on your paper the Djikstra's traversal of this graph.
● Write out what the [TODO] looks like at each step.
● Write out what the edgeTo map looks like.
● Construct a path from S to H from the edgeTo map
● What would happen if you mark a vertex as VISITED 

when you add it to the [TODO] instead (like BFS did)?

1
1

1

5
6

3

4

6

3 2

3

2

1



Wrap Up Discussion

Complexity of rebuilding a path from an edgeTo map (assuming O(1) lookup time)?

Complexity of BFS?

Complexity of BFS and then rebuilding a path?



Wrap-Up Discussion

Complexity of rebuilding a path from an edgeTo map (assuming O(1) lookup time)? O(n)

Complexity of BFS? O(n + m)

Complexity of BFS and then rebuilding a path? O(n + m)


