CSE 250 Recitation

April 3 - 4: Binary Trees

A heap is a partially ordered complete binary tree

A heap is a partially ordered complete binary tree

Heaps

A heap is a **partially ordered complete binary tree** Every parent has at Every leaf is in the two most two children deepest layers and leaves are added from left to right

Heaps

A heap is a partially ordered complete binary tree

You can infer the order between parents and children, but not between siblings

<u>Min Heap</u>: parent \leq children <u>Max Heap</u>: parent \geq children Every leaf is in the two deepest layers and leaves are added from left to right Every parent has at most two children

Binary Search Trees

A binary search tree is a **binary tree** where:

- Every node in the right *subtree* of X is greater than X
- Every node in the left subtree of X is less than X

These two conditions mean that each node partitions the binary search tree into a lesser subtree and greater subtree

Is this a binary tree?

Is this a binary tree? NO! Node 20 has > 2 children

Is this a binary tree?

Could this be a heap, binary search tree, or both?

Is this a binary tree?

YES!

Could this be a heap, binary search tree, or both?

BST (every node partitions its subtrees)

Not a heap (not complete, incorrect ordering)

Is this a binary tree?

Could this be a heap, binary search tree, or both?

Is this a binary tree? YES!

Could this be a heap, binary search tree, or both?

BST (every node partitions its subtrees)

Not a heap (not complete)

Is this a binary tree?

Could this be a heap, binary search tree, or both?

Is this a binary tree? YES!

Could this be a heap, binary search tree, or both?

Min Heap (complete and every parent is ≤ its children)

Not a BST (every left child is greater than its parent)

Is this a binary tree?

Could this be a heap, binary search tree, or both?

Is this a binary tree?

YES!

Could this be a heap, binary search tree, or both?

Could be either a BST or a Max Heap!

Exercise (Part 1)

Draw a Min Heap containing the values {1, 2, 3, 4, 6, 7, 8, 9}

Draw a BST containing the values {1, 2, 3, 4, 6, 7, 8, 9}

Trade papers with a neighbor and verify that their trees are valid

- If they are not, discuss and fix with your neighbor
- If they are, keep your neighbors paper for the next exercise
- If you are unsure, ASK!

Example

Exercise (Part 2)

For each tree on your neighbors paper answer the following:

- What is the depth of the tree?
- What is the minimum/maximum depth the tree could be?
- Write out the array representation of the Heap
- Perform a left rotation around 6 on the BST (if possible)
 - How did it affect the depth of the BST?

Swap papers back with your neighbor and verify their answers, ask questions if you are unsure!

Example

Exercise (Part 3)

On the paper in front of you:

- Draw the heap that would result from inserting 5 into the heap
- Draw the BST that would result from inserting 5 into the BST

For each:

- How did the insertion affect the depth of the tree?
- How many comparisons did you have to do to perform the insertion?
- What is the maximum number of comparisons needed to:
 - Insert any value into the tree in front of you (and give a value that would cause this)
 - Insert 5 into any arbitrary (but valid) tree containing nodes {1,2,3,4,6,7,8,9}
 - Insert any value into any arbitrary (but valid tree) in terms of n?

Example

Example

Comparisons required: 3

Max comparisons for this tree: 5 (for example when inserting 1.5)

Max comparisons to insert 5 into any BST with these values: 8

Max comparisons in general: n

Bonus Questions

- 1. What are the tight bounds on inserting *n* elements into a Min Heap?
 - a. What if the values are in **ascending order**?
 - b. What if the values are in **descending order**?
- 2. What are the bounds on inserting *n* elements into a BST?
 - a. What if the values are in **ascending order**?
 - b. What if the values are in **descending order**?

Bonus Questions

- 1. What are the tight bounds on inserting *n* elements into a Min Heap? O(n log n), $\Omega(n)$
 - a. What if the values are in **ascending order**? $\Theta(n)$
 - b. What if the values are in **descending order**? $\Theta(n \log n)$
- 2. What are the bounds on inserting **n** elements into a BST? $O(n^2)$, $\Omega(n \log n)$
 - a. What if the values are in **ascending order**? $\Theta(n^2)$
 - b. What if the values are in **descending order**? $\Theta(n^2)$