
UBIT: Version A CSE 250 — Fall 2024

Part a: Bounds

For each question in this section, give the unqualified big-O, big-Ω, and big-Θ bounds for the specified function. If the
big-Θ bound does not exist, write DNE. For this section you are not required to show any work or give a proof unless
stated otherwise.

Question 1 [3 points]

f1(n) =

n3∑
i=1

(20n2 + 5i)

Big-O:

Big-Ω:

Big-Θ:

Question 2 [3 points]

f2(n) =

log(n5)∑
i=0

i−1∑
j=0

2j

Big-O:

Big-Ω:

Big-Θ:

1

UBIT: Version A CSE 250 — Fall 2024

Question 3 [3 points]

f3(n) =

{
log(n) + 9n log(n) + n2 if n is odd

n log(n) + 5 log(n) if n is even

Big-O:

Big-Ω:

Big-Θ:

Question 4 [6 points]

Prove that the following function is in O(n4):

f4(n) = 39n2 + 10 + 5n4

2

UBIT: Version A CSE 250 — Fall 2024

Part b: Hash Table Concepts

Question 1 [12 points]

Consider a Hash Table that uses chaining to resolve collisions, but instead of each bucket being a LinkedList, each
bucket is a Sorted ArrayList. State the expected and tight unqualified runtime for each Hash Table operation
discussed in class.

insert(T elem) contains(T elem) remove(T elem)

Expected: Expected: Expected:

Unqualified: Unqualified: Unqualified:

Question 2 [8 points]

In class we described an implementation of the Set ADT using a Hash Table. In at most a few sentences, describe
what concrete changes we would need to make in order to implement the Bag ADT using a Hash Table. As a
reminder, the Bag ADT is unordered (like a Set), but allows for duplicate elements.

3

UBIT: Version A CSE 250 — Fall 2024

Part c: Hash Table Implementation

For all questions in this section, you may assume that hash1 and hash2 are hash functions that return the following values
for keys A through F:

A B C D E F
hash1 37 13 93 24 64 58
hash2 60 86 27 81 38 57

Question 1 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 as its hash function, and resolves collisions using chaining.
You may assume no rehash is required. State which bucket each element will end up in if elements A through F
are inserted in alphabetical order.

A: B: C: D: E: F:

Question 2 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 as its hash function, and resolves collisions using open
addressing. You may assume no rehash is required. State which bucket each element will end up in if elements
A through F are inserted in alphabetical order.

A: B: C: D: E: F:

4

UBIT: Version A CSE 250 — Fall 2024

Question 3 [6 points]

Consider a Hash Table that has 10 buckets, uses hash1 and hash2 as its hash functions, and resolves collisions
using cuckoo hashing exactly as you did in PA3. You may assume no rehash is required. State which bucket
each element will end up in if elements A through F are inserted in alphabetical order.

A: B: C: D: E: F:

Question 4 [2 points]

If the Hash Table with chaining described in Question 1 was given a maximum load factor of 0.3 which element
would trigger a rehash upon being inserted? If no element would trigger a rehash write “None”.

5

UBIT: Version A CSE 250 — Fall 2024

Part d: Code Runtime

This part of the exam pertains to the following function and labeled boxes. For several questions, you will be asked to
provide summations of runtimes labeled with line numbers. See below for an example of a summation for lines 11-13.

1 public Integer MyFunction(List <RecordA > recordsN ,

2 List <RecordB > recordsM)

3 {

4 Accumulator accumulator =

5 InitAccumulator(recordsN.size(), recordsM.size());

6

7 for(i : recordsN) {

8 InsertIntoAccumulator(accumulator , i);

9 }

10

11 CleanupAccumulator(accumulator);

12

13 Integer result = 0;

14

15 for(j : recordsM) {

16

17 if(IsValid(j)) {

18 result += RetrieveFromAccumulator(accumulator , j);

19 } else {

20 result += 1;

21 }

22

23 }

24

25 return result;

26 }

A (lines 7-9) B (lines 4-9)

C (lines 17-21)

D (lines 15-23)

E (lines 11-25)

Example

O(1) + O(1)

Line 11 Line 13

The table below presents tight bounds on the runtime of the functions called by MyFunction. The letters N and M
indicate the exact values of recordsN.size() and recordsM.size() respectively. The expression |A| means the number
of times that InsertIntoAccumulator has previously been called on A (i.e., the size of A). You may assume that iterating
over a list is constant-time per element. All bounds are unqualified.

Function Big-O Big-Ω
InitAccumulator(N, M) O(N +M) Ω(N)
InsertIntoAccumulator(A, i) O(|A|) Ω(|A|)
CleanupAccumulator(A, i) O(1) Ω(1)
IsValid(j) O(1) Ω(1)
RetrieveFromAccumulator(A, i) O(|A|2) Ω(|A|)

Question 1 [5 points]

For the blocks of code labeled A and B, respectively, do each of the following:
1. Provide a tight upper (Big-O) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 5, (ii) 7-9, and (iii) 8.
3. Expand the summation and simplify the resulting bound.

6

UBIT: Version A CSE 250 — Fall 2024

Question 2 [5 points]

For the blocks of code labeled C, D, and E, respectively, do each of the following:
1. Provide a tight upper (Big-O) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 11, (ii) 15-21, (iii) 17-21, (iv) 17, and

(v) 18, and (vi) 20.
3. Expand the summation and simplify the resulting bound.

Question 3 [5 points]

For the blocks of code labeled A and B, respectively, do each of the following:
1. Provide a tight lower (Big-Ω) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 5, (ii) 7-9, and (iii) 8.
3. Expand the summation and simplify the resulting bound.

7

UBIT: Version A CSE 250 — Fall 2024

Question 4 [5 points]

For the blocks of code labeled C, D, and E, respectively, do each of the following:
1. Provide a tight lower (Big-Ω) bound on the runtime of the code in the rectangle as a summation.
2. Label the components of your summation that correspond to lines (i) 11, (ii) 15-21, (iii) 17-21, (iv) 17, and

(v) 18, and (vi) 20.
3. Expand the summation and simplify the resulting bound.

Question 5 [5 points]

Provide the simplified, tight asymptotic upper (Big-O) and lower (Big-Ω) bounds on the runtime of MyFunction
in terms of the sizes of its two inputs (recordsN.size() = N ; recordsM.size() = M).

Question 6 [5 points]

Provide the simplified tight, unqualified simplified asymptotic upper (Big-O) bound on Block D, if we additionally
provide you with the following two facts:

• M ≫ N (M is guaranteed to be much bigger than N , i.e., N ∈ O(M))
• The amortized runtime of RetrieveFromAccumulator(A, j) is O(|A|).

8

UBIT: Version A CSE 250 — Fall 2024

Part e: Data Structure Design

For each of the following questions, circle the abstract data type and the data structure that best fits the requirements
of the collection described in the question.

Question 1 [5 points]

The streets and intersections of a city for use in a route-finding application.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Question 2 [5 points]

The waiting list for a class, where students are admitted in the order they joined the waiting list.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Question 3 [5 points]

The character’s inventory in a game. For each item, identified by its name, you need to keep track of how many
copies of the item you have.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

Question 4 [5 points]

A checklist of every quest the story’s protagonist needs to complete to succeed. We only care about a quest until
it is checked off, and so we want to be able to quickly remove tasks from the checklist. Every quest is identified
by a magical reference to the quest’s entry in the checklist, and may be completed in any order.

ADT: List Stack Queue Priority Queue Graph Set Map

Data Structure: Array LinkedList ArrayList Ring Buffer Binary Heap

Edge List Adjacency List Adjacency Matrix AVL Tree

Red-Black Tree Hash Table

9

UBIT: Version A CSE 250 — Fall 2024

Part f: Heaps and Binary Search Trees

Question 1 [20 points]

For each node in the tree provided below, mark down (i) the height of the node, (ii) the balance factor of
the node, (iii) whether the node satisfies the BST ordering property, and (iv) whether the node satisfies the
min-heap ordering property. Give your answer for each node as if it were the root of the tree.

Value: 23

Height:

Balance:

BST Ordered: Y / N

Heap Ordered: Y / N

Value: 27

Height:

Balance:

BST Ordered: Y / N

Heap Ordered: Y / N

Value: 31

Height:

Balance:

BST Ordered: Y / N

Heap Ordered: Y / N

null

Value: 29

Height:

Balance:

BST Ordered: Y / N

Heap Ordered: Y / N

null null

10

UBIT: Version A CSE 250 — Fall 2024

Part g: Class Participation [Bonus]

Question 1 [5 points]

Name any two of the undergraduate TAs for this course (first name only is fine).

11

UBIT: Version A CSE 250 — Fall 2024

Scrap Page

12

UBIT: Version A CSE 250 — Fall 2024

Scrap Page

13

UBIT: Version A CSE 250 — Fall 2024

Scrap Page

14

